Hypoxia-induced MIR31HG expression promotes partial EMT and basal-like phenotype in pancreatic ductal adenocarcinoma based on data mining and experimental analyses.

J Transl Med

Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 301, Yuantong Rd., Zhonghe Dist., New Taipei City, 235603, Taiwan.

Published: March 2025

Background: Pancreatic ductal adenocarcinoma (PDAC) is the most common and aggressive type of pancreatic cancer, with a five-year survival rate below 8%. Its high mortality is largely due to late diagnosis, metastatic potential, and resistance to therapy. Epithelial-mesenchymal transition (EMT) plays a key role in metastasis, enabling cancer cells to become mobile. Partial EMT, where cells maintain both epithelial and mesenchymal traits, is more frequent in tumors than complete EMT and contributes to cancer progression. The long non-coding RNA MIR31 host gene (MIR31HG) has recently emerged as a critical factor in PDAC oncogenesis. This study aimed to investigate MIR31HG's role in partial EMT and its association with the basal-like PDAC subtype.

Methods: We analyzed the relationship between MIR31HG expression, partial EMT, and the basal-like subtype of PDAC by integrating data from public databases. We reanalyzed public data from PDAC patient-derived organoids to assess MIR31HG expression and gene signatures under hypoxic and normoxic conditions. RNA sequencing and bioinformatics analyses, including gene set enrichment analysis (GSEA), were used to investigate differentially expressed genes and pathway enrichments. EMT, partial EMT, and hypoxia scores were calculated based on the expression levels of specific gene sets.

Results: We observed that MIR31HG overexpression strongly correlates with higher partial EMT scores and the stabilization of the epithelial phenotype in PDAC. MIR31HG is highly expressed in the basal-like subtype of PDAC, which exhibits partial EMT traits. Hypoxia, a hallmark of basal-like PDAC, was shown to significantly induce MIR31HG expression, thereby promoting the basal-like phenotype and partial EMT. In patient-derived organoids, hypoxic conditions increased MIR31HG expression and enhanced basal-like and partial EMT gene signatures, while normoxia reduced these expressions. These findings suggest that hypoxia-induced MIR31HG expression plays a crucial role in driving the aggressive basal-like subtype of PDAC.

Conclusions: Our results indicate that MIR31HG is crucial in regulating PDAC progression, particularly in the aggressive basal-like subtype associated with hypoxia and partial EMT. Targeting the MIR31HG-mediated network may offer a novel therapeutic approach to combat hypoxia-driven PDAC.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12967-025-06292-xDOI Listing

Publication Analysis

Top Keywords

partial emt
40
mir31hg expression
24
basal-like subtype
16
emt
13
partial
10
pdac
10
basal-like
9
mir31hg
9
hypoxia-induced mir31hg
8
emt basal-like
8

Similar Publications

Hypoxia-induced MIR31HG expression promotes partial EMT and basal-like phenotype in pancreatic ductal adenocarcinoma based on data mining and experimental analyses.

J Transl Med

March 2025

Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 301, Yuantong Rd., Zhonghe Dist., New Taipei City, 235603, Taiwan.

Background: Pancreatic ductal adenocarcinoma (PDAC) is the most common and aggressive type of pancreatic cancer, with a five-year survival rate below 8%. Its high mortality is largely due to late diagnosis, metastatic potential, and resistance to therapy. Epithelial-mesenchymal transition (EMT) plays a key role in metastasis, enabling cancer cells to become mobile.

View Article and Find Full Text PDF

TMEM97 governs partial epithelial-mesenchymal transition of retinal pigment epithelial cells via the CTNND2-ADAM10 axis.

Mol Ther Nucleic Acids

March 2025

Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA.

Epithelial-mesenchymal transition (EMT) is associated with retinal pigment epithelium (RPE) dysfunction in degenerative retinal diseases. However, the role of partial EMT (pEMT), a hybrid state exhibiting both epithelial and mesenchymal markers, remains poorly understood in this context. Our previous research demonstrated that TMEM97 ablation in mice worsens photoreceptor loss in an oxidant-induced RPE damage model.

View Article and Find Full Text PDF

The Role of HADHB in Mitochondrial Fatty Acid Metabolism During Initiation of Metastasis in ccRCC.

Mol Carcinog

February 2025

State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China.

The initiation and progression of clear cell renal cell carcinoma (ccRCC) are closely linked to significant metabolic alterations. Specifically, lipid metabolism alterations and their association with the high invasiveness in ccRCC require further investigation. After conducting RNA-sequencing (RNA-seq), we discovered that Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Beta (HADHB) was significantly downregulated in the highly invasive ccRCC cell line.

View Article and Find Full Text PDF

The mesothelium is a squamous monolayer that ensheathes internal organs, lines the body cavity, and the diaphragm. It serves as a protective barrier, coated in glycocalyx, and secretes lubricants to facilitate tissue movement. How the mesothelium forms is poorly understood.

View Article and Find Full Text PDF

Fibrosis is the final common pathway leading to end stage chronic kidney disease (CKD). However, the function of protein palmitoylation in renal fibrosis and underlying mechanisms remain unclear. In this study, we observed that the expression of the palmitoyltransferase ZDHHC18 was significantly elevated in unilateral ureteral obstruction (UUO) and folic acid (FA)-induced renal fibrosis mouse models, and was significantly upregulated in the fibrotic kidneys of chronic kidney disease patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!