Spinal cord injury (SCI) can cause permanent dysfunction proceeding from multifaceted neuroinflammatory processes that contribute to damage and repair. Fidgetin-like 2 (FL2), a microtubule-severing enzyme that negatively regulates axon growth, microglial functions, and wound healing, has emerged as a potential therapeutic target for central nervous system injuries and neuroinflammation. To test the hypothesis that FL2 knockdown increases acute neuroinflammation and improves recovery after SCI, we examined the effects of nanoparticle-encapsulated FL2 siRNA treatment after a moderate contusion SCI in rats. SCI significantly increased FL2 expression in the lesion site and rostral to the lesion 1 day post-injury (dpi). A single treatment of FL2 siRNA after injury led to modestly improved locomotor recovery consistent with the preservation of corticospinal tract function, accompanied by reduced inflammation and increased presence of oligodendrocytes. In determining the acute effects of treatment, RNA sequencing and gene set enrichment analyses revealed that FL2 siRNA modulates early cellular responses, including chemokine signaling, both pro- and anti-inflammatory immune reactions, and neurotransmitter signaling pathways at 1, 4, and 7 dpi. Follow-up analyses at 4 dpi using dual in situ hybridization and immunohistochemistry demonstrated that SCI increased FL2 mRNA and that FL2 was colocalized with microglia/macrophages. FL2 downregulation resulted in a marked accumulation of microglia at the lesion site, accompanied by increased inflammatory markers (IL-1β, TGF-β1, and CD68). The results suggest SCI induces an increase in FL2 expression that undermines acute inflammatory responses as well as spinal cord integrity and growth. Overall, our study suggests that targeting FL2 holds promise as a therapeutic strategy for treating SCI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s12974-025-03344-3 | DOI Listing |
Front Immunol
March 2025
Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
Background: Osteosarcoma, an aggressive bone malignancy predominantly affecting children and adolescents, presents significant therapeutic challenges with a 5-year survival rate below 30% in metastatic cases. T-cell exhaustion, characterized by the overexpression of immune checkpoint molecules, contributes to osteosarcoma progression and immune evasion. Although targeting these inhibitory pathways has shown potential in restoring T-cell activity, the molecular regulators of T-cell depletion in osteosarcoma are poorly understood.
View Article and Find Full Text PDFFront Neurol
February 2025
Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
Background: Varicella-zoster virus (VZV) central nervous system infection is typically observed in immunocompromised patients, and there is a lack of studies involving large samples of non-immunocompromised individuals. In this study, we retrospectively analyzed 108 non-immunocompromised patients diagnosed with VZV central nervous system infection.
Methods: This retrospective study was conducted in the Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, China.
Front Cell Dev Biol
February 2025
Wayne State University, Detroit, MI, United States.
Fluids Barriers CNS
March 2025
School of Veterinary Medicine, University of Surrey, Guildford, GU2 7XH, UK.
Cerebrospinal fluid (CSF) plays a crucial role in maintaining brain homeostasis by facilitating the clearance of metabolic waste and regulating intracranial pressure. Dysregulation of CSF flow can lead to conditions like syringomyelia, and hydrocephalus. This review details the anatomy of CSF flow, examining its contribution to waste clearance within the brain and spinal cord.
View Article and Find Full Text PDFJ Neuroinflammation
March 2025
Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
Spinal cord injury (SCI) can cause permanent dysfunction proceeding from multifaceted neuroinflammatory processes that contribute to damage and repair. Fidgetin-like 2 (FL2), a microtubule-severing enzyme that negatively regulates axon growth, microglial functions, and wound healing, has emerged as a potential therapeutic target for central nervous system injuries and neuroinflammation. To test the hypothesis that FL2 knockdown increases acute neuroinflammation and improves recovery after SCI, we examined the effects of nanoparticle-encapsulated FL2 siRNA treatment after a moderate contusion SCI in rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!