Background: Diabetic cystopathy (DCP) is linked to bladder nerve conduction disorders, with diabetes-induced neuropathy impairing nerve signal transmission and causing bladder dysfunction. Myosin 5a, vital for neuronal transport, has been linked to neurological disorders, though its role in DCP remains unclear. The objective of this study was to investigate whether Myosin 5a plays a potential regulatory role in Diabetic Cystopathy.
Methods: Bladder strips from diabetic rats were use to assess heightened responsiveness to external stimuli. Urodynamic assessments were conducted to track the progression of bladder voiding dysfunction over time, following streptozotocin (STZ) injection. Single-cell RNA-Seq mining was employed to identify associations between Myosin 5a and bladder overactivity. Cellular and tissue analyses were performed to determine the co-localization of Myosin 5a with neurotransmitter-related proteins. The impact of Myosin 5a knockdown on ChAT and SP expression in bladder neurons was also evaluated. Additionally, Myosin 5a-deficient DBA mice were studied for voiding function and sensitivity to stimuli. Student's t-test (two-tailed) or Mann-Whitney's U test analysis of variance was used to analyze the difference between groups.
Results: Bladder strips from diabetic rats exhibit increased responsiveness to external stimuli, with urodynamic assessments showing a progressive decline in bladder function, culminating in overactivity by the fourth week post-STZ injection. Co-localization of Myosin 5a with neurotransmitter-related proteins was observed, and the knockdown of Myosin 5a in bladder neurons led to a significant reduction in ChAT and SP expression. Myosin 5a-deficient DBA mice exhibited abnormal voiding function and reduced sensitivity to stimuli, along with significant downregulation of SLC17A9. Single-cell RNA-Seq analysis revealed a significant link between Myosin 5a and bladder overactivity, with Myosin 5a expression escalating in tandem with the severity of bladder dysfunction.
Conclusions: Myosin 5a's dysregulation in diabetic rats may worsen bladder overactivity, suggesting its potential as a therapeutic target for diabetic OAB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s10020-025-01140-6 | DOI Listing |
J Mol Cell Cardiol
March 2025
Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163-1062, USA; Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99163-1062, USA. Electronic address:
Sarcomere length-dependent activation (LDA) is the key cellular mechanism underlying the Frank-Starling law of the heart, in which sarcomere stretch leads to increased Ca sensitivity of myofilament and force of contraction. Despite its key role in both normal and pathological states, the precise mechanisms underlying LDA remain unclear but are thought to involve multiple interactions among sarcomere proteins, including troponin of the thin filament, myosin, titin and myosin binding protein C (MyBP-C). Our previous study with permeabilized rat cardiac fibers demonstrated that the mechanism underlying the increase in Ca sensitivity of thin filament induced by sarcomere stretch may involve sarcomere length (SL)-induced interactions between troponin and weakly bound, disordered relaxed state (DRX) myosin heads in diastole, rather than strong myosin-actin crossbridge interactions.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea.
Sarcopenia is an age-related muscle atrophy characterized by decreased muscle mass and function. However, potential treatments to alleviate sarcopenia remain limited. In this study, we investigated the effects of α-ketoisocaproate (KIC) on C2C12 differentiation and reactive oxygen species (ROS)-induced atrophy in C2C12 myotubes.
View Article and Find Full Text PDFMol Med
March 2025
School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, China.
Background: Diabetic cystopathy (DCP) is linked to bladder nerve conduction disorders, with diabetes-induced neuropathy impairing nerve signal transmission and causing bladder dysfunction. Myosin 5a, vital for neuronal transport, has been linked to neurological disorders, though its role in DCP remains unclear. The objective of this study was to investigate whether Myosin 5a plays a potential regulatory role in Diabetic Cystopathy.
View Article and Find Full Text PDFCan J Cardiol
March 2025
Department of Demography and Geodemography, Faculty of Science, Charles University, Prague, Czech Republic.
Cureus
February 2025
Neurology, University of Texas Medical Branch, Galveston, USA.
Myasthenia gravis (MG) is an autoimmune neuromuscular disease characterized by fatigable muscle weakness. While commonly linked to acetylcholine receptor (AChR) antibodies, other reported antibodies include muscle-specific kinase (MuSK), low-density lipoprotein receptor-related protein 4 (LRP4), agrin, striated muscle, myosin, ryanodine receptor, and titin. Notably, titin antibodies are being highlighted for their role in MG pathogenesis, as they have been associated with increased disease severity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!