Impact of immune cell metabolism on membranous nephropathy and prospective therapy.

Commun Biol

Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.

Published: March 2025

Membranous nephropathy (MN) is a primary glomerular disease commonly causing adult nephrotic syndrome. Characterized by thickened glomerular capillary walls due to immune complex deposition, MN is a complex autoimmune disorder. Its pathogenesis involves immune deposit formation, complement activation, and a heightened risk of renal failure. Central to MN is immune system dysfunction, particularly the dysregulation of B and T cell responses. B cells contribute to renal injury through the production of autoantibodies, particularly IgG targeting the phospholipase A2 receptor (PLA2R) on podocytes, while T cells modulate immune responses that influence disease progression. Metabolic reprogramming alters lymphocyte survival, differentiation, proliferation, and function, potentially triggering autoimmune processes. Although the link between immune cell metabolism and MN remains underexplored, this review highlights recent advances in understanding immune metabolism and its role in MN. These insights may provide novel biomarkers and therapeutic strategies for MN treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s42003-025-07816-3DOI Listing

Publication Analysis

Top Keywords

immune cell
8
cell metabolism
8
membranous nephropathy
8
immune
6
impact immune
4
metabolism membranous
4
nephropathy prospective
4
prospective therapy
4
therapy membranous
4
nephropathy primary
4

Similar Publications

Background: Cervical adenocarcinoma (ADC) is more aggressive compared to other types of cervical cancer (CC), such as squamous cell carcinoma (SCC). The tumor immune microenvironment (TIME) and tumor heterogeneity are recognized as pivotal factors in cancer progression and therapy. However, the disparities in TIME and heterogeneity between ADC and SCC are poorly understood.

View Article and Find Full Text PDF

Advancing Tumor Microenvironment Analysis: A Fluorescence Nanosystem for Caspase-1 Monitoring and Synergistic Therapy.

Anal Chem

March 2025

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China.

The lack of precise, real-time analytical tools for monitoring tumor microenvironment changes during treatment hinders advancements in integrated diagnostic and therapeutic platforms. Traditional caspase-3 monitoring strategies are limited by their inability to address drug resistance and newly discovered apoptotic pathways, leading to reduced accuracy and practicality. To overcome these limitations, we developed a fluorescence-based "Trojan horse" nanosystem, PFpR@CM, featuring high-sensitivity Caspase-1 detection, tumor-targeted delivery, and photothermal therapy.

View Article and Find Full Text PDF

Background: Early diagnosis and intervention are essential for improving the prognosis and survival of gastric cancer (GC) patients. However, specific biomarkers for early GC diagnosis are still unavailable.

Methods: Data-independent acquisition (DIA) proteomics was employed to identify differentially expressed proteins (DEPs) between GC and adjacent non-tumor tissues.

View Article and Find Full Text PDF

Background: The development of immunotherapy has led to a paradigm shift in the treatment of malignant tumors. Immune checkpoint inhibitors (ICIs) function by blocking the receptors and ligands of T cells from binding one another, empowering them to target and attack cancer cells. ICIs along with other immunotherapy treatments, have seen a significant increase in usage in recent years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!