Mitochondria are multifaceted organelles with crucial roles in energy generation, cellular signalling and a range of synthesis pathways. The study of mitochondrial biology is complicated by its own small genome, which is matrilineally inherited and not subject to recombination, and present in multiple, possibly different, copies. Recent methodological developments have enabled the analysis of mitochondrial DNA (mtDNA) in large-scale cohorts and highlight the far-reaching impact of mitochondrial genetic variation. Genome-editing techniques have been adapted to target mtDNA, further propelling the functional analysis of mitochondrial genes. Mitochondria are finely tuned signalling hubs, a concept that has been expanded by advances in methodologies for studying the function of mitochondrial proteins and protein complexes. Mitochondrial respiratory complexes are of dual genetic origin, requiring close coordination between mitochondrial and nuclear gene-expression systems (transcription and translation) for proper assembly and function, and recent findings highlight the importance of the mitochondria in this bidirectional signalling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41556-025-01625-w | DOI Listing |
J Neurochem
March 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Synaptic homeostasis of the principal neurotransmitters glutamate and GABA is tightly regulated by an intricate metabolic coupling between neurons and astrocytes known as the glutamate/GABA-glutamine cycle. In this cycle, astrocytes take up glutamate and GABA from the synapse and convert these neurotransmitters into glutamine. Astrocytic glutamine is subsequently transferred to neurons, serving as the principal precursor for neuronal glutamate and GABA synthesis.
View Article and Find Full Text PDFAntioxid Redox Signal
March 2025
Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France.
Peroxiredoxins (Prx) are ubiquitous Cys peroxidases regulated by sulfinylation, a modification that occurs when the sulfenic acid generated on the catalytic Cys by peroxide reduction reacts with a second molecule of peroxide. In the Prx1 family, sulfinylation sensitivity is controlled by competition between a structural transition from a fully folded (FF) to locally unfolded (LU) conformation and the chemical step of sulfinylation. The initial peroxide reduction relies on a conserved catalytic hydroxylated residue that allows peroxide optimal activation.
View Article and Find Full Text PDFCirc Heart Fail
March 2025
Division of Cardiovascular Medicine, School of Medicine, University of California San Diego, La Jolla. (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.).
Background: Muscle proteins of the obscurin protein family play important roles in sarcomere organization and sarcoplasmic reticulum and T-tubule architecture and function. However, their precise molecular functions and redundancies between protein family members as well as their involvement in cardiac diseases remain to be fully understood.
Methods: To investigate the functional roles of Obsc (obscurin) and its close homolog Obsl1 (obscurin-like 1) in the heart, we generated and analyzed knockout mice for , , as well as double knockouts.
Background: The essential trace element iron, which can occur in various oxidation states, is required for many biochemical reactions and processes in the human body.
Methods: This review summarizes the current knowledge about the physiology of iron metabolism.
Results: The physiological functions comprise oxygen transport in the blood, electron transport processes, DNA synthesis and gene regulation, the regulation of cell growth and differentiation, and the energy production in mitochondria.
J Asthma
March 2025
Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!