Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Water pollution by metals and metalloids promotes toxic effects to aquatic biota especially in mining regions. Environmental legislation applied to protect aquatic life from the toxicity of metals relies on the definition of protective values (PVs) for each compound. Among methods used to define PVs, Species Sensitivity Distribution (SSD) curves enable the derivation of the Predicted No Effect concentration (PNEC). In this context, this is one of the first studies to propose the construction of acute and chronic split SSD curves built separately for three groups of freshwater organisms (algae, invertebrates and fish) to derive PNEC values for the 14 metals most commonly observed in iron ore mining tailings. Data used to construct split SSD curves were derived from the USEPA ECOTOX knowledgebase and EnviroTox databases and segregated according to the freshwater organism group and as "acute" or "chronic" toxicity. Then, split SSD curves were built using a minimum of nine species for each group to determine the hazardous concentration to 5% of species (HC) and PNEC values for each group. Once PNEC were derived, a framework was proposed to calculate the Bioavailabity Factor (BioF) used to adjust values for local bioavailability conditions considering water quality characteristics in different regions. The lowest acute PNEC were observed for algae and invertebrates and corresponded to Silver (Ag). Nearly half of calculated PNEC were below current PVs in practice in Brazil, United States (US), United Kingdom (UK), Canada and European Union (EU). Results reinforce the pertinence of: (i) splitting SSD curves to define PVs for metals; and (ii) taking bioavailability into consideration to correct PNEC for local conditions. In addition, outcomes suggest that it is critical to rethink PVs related to metals for aquatic life protection, mainly in Brazil and Minas Gerais state, a region known for extensive mining activity. Finally, PNEC values obtained in this study may be used for ecological risk assessment studies, especially in areas affected by mining and other activities that result in pollution by metals and metalloids, such as Brazil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-025-92692-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!