Marine invertebrates, such as oysters, were once thought to form large, panmictic populations with little genetic differentiation due to their high reproductive capacity and dual life stages. However, recent studies have shown significant genetic structuring and moderate gene flow across populations, influenced by factors like ocean currents, historical climate events, and environmental changes. The black-lip oyster (Saccostrea echinata), with its extensive dispersal potential, is ideal for population genetics studies. In current study, mitochondrial DNA (COI gene) was utilized to investigate the population structure, genetic diversity, and demographic history of S. echinata in the northern South China Sea (NSCS) and Beibu Gulf. Results revealed high genetic diversity with 82 haplotypes from 190 specimens, a star-shaped haplotype network, and significant genetic differentiation, with most variation occurring within populations. Genetic analysis identified three distinct genetic groups across the sampled regions. Historical demographic analysis indicated population expansion approximately 44-155 Kya after the Last Glacial Maximum. Genetic structure was shaped by historical climatic events causing isolation and secondary contact, as well as contemporary ocean currents influencing gene flow. The study highlights the complex interplay of genetic diversity, population structure, and historical dynamics in S. echinata, with implications for conservation and aquaculture in the Asia-Pacific region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-025-92747-6 | DOI Listing |
J Exp Med
June 2025
Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
Leukemia-driving mutations are thought to arise in hematopoietic stem cells (HSC), yet the natural history of their spread is poorly understood. We genetically induced mutations within endogenous murine HSC and traced them in unmanipulated animals. In contrast to mutations associated with clonal hematopoiesis (such as Tet2 deletion), the leukemogenic KrasG12D mutation dramatically accelerated HSC contribution to all hematopoietic lineages.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
Background: Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality among the elderly in China. Genetic predisposition is a recognized risk factor for COPD, with emerging as a promising candidate gene due to its involvement in smoking behavior and lung function. This study aimed to investigate the association between eight SNPs and COPD susceptibility in the Chinese elderly population.
View Article and Find Full Text PDFAnn Bot
March 2025
Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion 7505101, Israel.
Background And Aims: Morphological differences between the two genetically close wild radishes, Raphanus raphanistrum and R. pugioniformis, include differences in fruit structure that influence their dispersal ability and within population spatial structure. Here, we tested within- and among-populations genetic variation, hypothesizing that (i) short-distance dispersal of heavy fruits in R.
View Article and Find Full Text PDFPhytopathology
March 2025
Mendel University in Brno, Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Zemědělská 3, 613 00 Brno, Brno, Czech Republic, 613 00;
is a long-established, well known and globally important genus of plant pathogens. Phylogenetic evidence has shown that the biologically distinct, obligate biotrophic downy mildews evolved from at least twice. Since, cladistically, this renders 'paraphyletic', it has been proposed that evolutionary clades be split into multiple genera (Runge et al.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
March 2025
Department of Cell Biology and Physiology, Curriculum in Neuroscience, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.
Collateral blood vessels are unique, naturally occurring endogenous bypass vessels that provide alternative pathways for oxygen delivery in obstructive arterial conditions and diseases. Surprisingly however, the capacity of the collateral circulation to provide protection varies greatly among individuals, resulting in a significant fraction having poor collateral circulation in their tissues. We recently reviewed evidence that the presence of naturally-occurring polymorphisms in genes that determine the number and diameter of collaterals that form during development (ie, genetic background), is a major contributor to this variation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!