Accurate procentriole formation is critical for centriole duplication. However, the holistic transcriptional regulatory mechanisms underlying this process remain elusive. Here, we show that KAT7 crotonylation, facilitated by the crotonyltransferase hMOF, competes against its acetylation regulated by the deacetylase HDAC2 at the K432 residue upon DNA damage stimulation. This competition diminishes its histone acetyltransferase activity, leading to the inhibition of procentriole formation in colorectal cancer cells. Mechanistically, the reduction of KAT7 histone acetyltransferase activity by the antagonistic effect of KAT7 crotonylation against its acetylation decreases the gene expression associated with procentriole formation by modulating the enrichment of H3K14ac at their promoters and plays an important role in colorectal tumorigenesis. Furthermore, KAT7 crotonylation and acetylation are associated with the prognosis in colorectal cancer patients. Collectively, our findings uncover a previously unidentified role of KAT7 in the regulation of procentriole formation and colorectal tumorigenesis via competitive antagonism of its crotonylation against acetylation.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-025-57546-7DOI Listing

Publication Analysis

Top Keywords

procentriole formation
20
kat7 crotonylation
16
crotonylation acetylation
16
formation colorectal
12
colorectal tumorigenesis
12
competitive antagonism
8
histone acetyltransferase
8
acetyltransferase activity
8
colorectal cancer
8
kat7
6

Similar Publications

Accurate procentriole formation is critical for centriole duplication. However, the holistic transcriptional regulatory mechanisms underlying this process remain elusive. Here, we show that KAT7 crotonylation, facilitated by the crotonyltransferase hMOF, competes against its acetylation regulated by the deacetylase HDAC2 at the K432 residue upon DNA damage stimulation.

View Article and Find Full Text PDF

Centrioles play a central role in cell division by recruiting pericentriolar material (PCM) to form the centrosome. Alterations in centriole number or function lead to various diseases including cancer or microcephaly. Centriole duplication is a highly conserved mechanism in eukaryotes.

View Article and Find Full Text PDF

Visualizing Cartwheel Disassembly Process During Mitosis in Fixed and Live Cells by Fluorescence Microscope.

Methods Mol Biol

November 2024

The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.

Centrosome is an evolutionarily conserved organelle that comprises two barrel-shaped centrioles surrounded by pericentriolar material (PCM). It functions as the major microtubule-organizing center (MTOC) to regulate cell polarity, motility, intracellular material transport during interphase, and bipolar spindle assembly during mitosis. Cartwheel assembly is considered the first step in the initiation of procentriole biogenesis at early S phase.

View Article and Find Full Text PDF

Time-series reconstruction of the molecular architecture of human centriole assembly.

Cell

April 2024

University of Geneva, Department of Molecular and Cellular Biology, Faculty of Sciences, Geneva, Switzerland. Electronic address:

Centriole biogenesis, as in most organelle assemblies, involves the sequential recruitment of sub-structural elements that will support its function. To uncover this process, we correlated the spatial location of 24 centriolar proteins with structural features using expansion microscopy. A time-series reconstruction of protein distributions throughout human procentriole assembly unveiled the molecular architecture of the centriole biogenesis steps.

View Article and Find Full Text PDF

Polo-like kinase 4 (PLK4) is a key regulator of centriole biogenesis, but how PLK4 selects a single site for procentriole assembly remains unclear. Using ultrastructure expansion microscopy, we show that PLK4 localizes to discrete sites along the wall of parent centrioles. While there is variation in the number of sites PLK4 occupies on the parent centriole, most PLK4 localize at a dominant site that directs procentriole assembly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!