Solution-processed metal halide perovskites are widely studied for their potential in high-efficiency light-emitting diodes, yet they are facing several challenges like insufficient brightness, short operational lifetimes, and reduced power conversion efficiency under practical operation conditions. Here, we develop an interfacial amidation reaction on sacrificial ZnO substrates to produce perovskite films with low trap density (1.2 × 10cm), and implement a device structure featuring a mono-molecular hole-injection layer and an all-inorganic bi-layered electron-injection layer. This design leads to green perovskite light-emitting diodes with a brightness of ~ 312,000 cd m, a half-lifetime of 350 h at 1000 cd m, and a power conversion efficiency of 15.6% at a current density of 300 mA cm. Furthermore, the perovskite films show a low amplified spontaneous emission threshold of 13 μJ cm. Thus, our approach significantly advances the performance of green perovskite light-emitting diodes and opens up an avenue toward perovskite-based electrically pumped lasers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41467-025-56557-8 | DOI Listing |
ACS Appl Mater Interfaces
March 2025
Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States.
The use of 2D perovskite capping layers to passivate the surface defects of 3D perovskite active layers has become ubiquitous in high performance lead halide perovskite solar cells. However, these 2D/3D interfaces can be highly dynamic, with the structure evolving to form various mixed dimensional phases when exposed to thermal stress or illumination. Changes in the photoluminescence spectrum of formamidinium lead iodide (FAPbI) films capped with alkylammonium-based 2D perovskites as they age at 100 °C or under simulated 1 sun illumination indicate that the 2D perovskite transforms to progressively larger inorganic layer thicknesses (denoted by layer number ), eventually approaching a steady-state condition where only the 3D perovskite ( = ∞) is detectable.
View Article and Find Full Text PDFNat Commun
March 2025
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
Solution-processed metal halide perovskites are widely studied for their potential in high-efficiency light-emitting diodes, yet they are facing several challenges like insufficient brightness, short operational lifetimes, and reduced power conversion efficiency under practical operation conditions. Here, we develop an interfacial amidation reaction on sacrificial ZnO substrates to produce perovskite films with low trap density (1.2 × 10cm), and implement a device structure featuring a mono-molecular hole-injection layer and an all-inorganic bi-layered electron-injection layer.
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
Polymer Science and Engineering Department, Conte Center for Polymer Science Research, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States.
The ability to arrange brightly fluorescent nanoscale materials into well-defined patterns is critically important in advanced optoelectronic structures. Traditional methods for doing so generally involve depositing different color quantum dot "inks," irradiating reactive (e.g.
View Article and Find Full Text PDFSmall
March 2025
Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, P. R. China.
Storing perovskite precursor solutions under ambient conditions poses a significant challenge to commercialization, as humidity and oxidation accelerate ageing and introduce defects in devices. A major contributor to solution ageing and impurity perovskite phases is the deprotonation of hybrid organic cations, specifically methylammonium (MA) and formamidinium (FA). In this work, a proton-rich additive, 4-(aminomethyl)pyridine 2-iodide, is used to inhibit MA deprotonation in precursor solutions by generating free H, thereby mitigating the degradation of organic cations under oxygen and humidity stress.
View Article and Find Full Text PDFChem Commun (Camb)
March 2025
Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588-0299, USA.
Capitalizing on the nonvolatile, nanoscale controllable polarization, ferroelectric perovskite oxides can be integrated with various functional materials for designing emergent phenomena enabled by charge, lattice, and polar symmetry mediated interfacial coupling, as well as for constructing novel energy-efficient electronics and nanophotonics with programmable functionalities. When prepared in thin film or membrane forms, the ferroelectric instability of these materials is highly susceptible to the interfacial electrostatic and mechanical boundary conditions, resulting in tunable polarization fields and Curie temperatures and domain formation. This review focuses on two types of ferroelectric oxide-based heterostructures: the epitaxial perovskite oxide heterostructures and the ferroelectric oxides interfaced with two-dimensional van der Waals materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!