Unidirectional and backscattering-free propagation of sound waves is of fundamental interest in physics and highly sought-after in engineering. Current strategies utilize topologically protected chiral edge modes in bandgaps, or complex mechanisms involving active constituents or nonlinearity. Here we propose passive, linear, one-way edge states based on spin-momentum locking of Rayleigh waves in two-dimensional media in the limit of vanishing bulk to shear modulus ratio, which provides perfect unidirectional and backscattering-free edge propagation that is immune to any edge roughness and has no limitation on its frequency (instead of residing in gaps between bulk bands). We further show that such modes are characterized by a topological winding number that protects the linear momentum of the wave along the edge. These passive and backscattering-free edge waves have the potential to enable phononic devices in the form of lattices or continua that work in previously inaccessible frequency ranges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41467-025-57518-x | DOI Listing |
Nat Commun
March 2025
Department of Physics, University of Michigan, Ann Arbor, MI, USA.
Unidirectional and backscattering-free propagation of sound waves is of fundamental interest in physics and highly sought-after in engineering. Current strategies utilize topologically protected chiral edge modes in bandgaps, or complex mechanisms involving active constituents or nonlinearity. Here we propose passive, linear, one-way edge states based on spin-momentum locking of Rayleigh waves in two-dimensional media in the limit of vanishing bulk to shear modulus ratio, which provides perfect unidirectional and backscattering-free edge propagation that is immune to any edge roughness and has no limitation on its frequency (instead of residing in gaps between bulk bands).
View Article and Find Full Text PDFSci Rep
March 2020
Department of Physics, Korea University, Seoul, 02841, Republic of Korea.
We have investigated the valley Chern number and gapless edge states in wide-gap semiconductor SiC and BN monolayers by using the density functional theory calculations. We found that while SiC monolayer has a non-quantized valley Chern number due to a partial mixing of the Berry curvature peaks pertaining to the opposite valleys, there exist topologically protected gapless edge states within the bulk gap, leading to a quantum valley Hall effect. Doping of the opposite charge carriers causes a backscattering-free valley current flowing on the opposite edge, which can be used for experimental confirmation and application at room temperature.
View Article and Find Full Text PDFSci Rep
December 2019
Department of Physics, Korea University, Seoul, 02841, Republic of Korea.
Our density functional theory calculations show that while AB-stacked bilayer silicene has a non-quantized spin-valley Chern number, there exist backscattering-free gapless edge states within the bulk gap, leading to a quantum spin-valley Hall effect. Using a tight-binding model for a honeycomb bilayer, we found that the interlayer potential difference and the staggered AB-sublattice potential lead to abrupt and gradual change of the valley Chern number from a quantized value to zero, respectively, while maintaining backscattering-free gapless edge states if the valley Chern number is not too close to zero. Under an inversion symmetry-breaking potential in the form of the staggered AB-sublattice potential, such as an antiferromagnetic order and a hexagonal diatomic sheet, a finite but non-quantized (spin-)valley Chern number can correspond to a quantum (spin-)valley Hall insulator.
View Article and Find Full Text PDFPhys Rev Lett
October 2017
Quantum Condensed Matter Research Group, RIKEN, Wako-shi, Saitama 351-0198, Japan.
We analyze the disorder-perturbed transport of quantum states in the absence of backscattering. This comprises, for instance, the propagation of edge-mode wave packets in topological insulators, or the propagation of photons in inhomogeneous media. We quantify the disorder-induced dephasing, which we show to be bound.
View Article and Find Full Text PDFNano Lett
October 2015
Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States.
A large gap two-dimensional (2D) topological insulator (TI), also known as a quantum spin Hall (QSH) insulator, is highly desirable for low-power-consuming electronic devices owing to its spin-polarized backscattering-free edge conducting channels. Although many freestanding films have been predicted to harbor the QSH phase, band topology of a film can be modified substantially when it is placed or grown on a substrate, making the materials realization of a 2D TI challenging. Here we report a first-principles study of possible QSH phases in 75 binary combinations of group III (B, Al, Ga, In, and Tl) and group V (N, P, As, Sb, and Bi) elements in the 2D buckled honeycomb structure, including hydrogenation on one or both sides of the films to simulate substrate effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!