A critical feature of microtubules is their GTP cap, a stabilizing GTP-tubulin rich region at growing microtubule ends. Microtubules polymerized in the presence of GTP analogs or from GTP hydrolysis-deficient tubulin mutants have been used as GTP-cap mimics for structural and biochemical studies. However, these analogs and mutants generate microtubules with diverse biochemical properties and lattice structures, leaving it unclear what is the most faithful GTP mimic and hence the structure of the GTP cap. Here, we generate a hydrolysis-deficient human tubulin mutant, αE254Q, with the smallest possible modification. We show that αE254Q-microtubules are stable, but still exhibit mild mutation-induced growth abnormalities. However, mixing two GTP hydrolysis-deficient tubulin mutants, αE254Q and αE254N, at an optimized ratio eliminates growth and lattice abnormalities, indicating that these 'mosaic microtubules' are faithful GTP cap mimics. Their cryo-electron microscopy structure reveals that longitudinal lattice expansion, but not protofilament twist, is the primary structural feature distinguishing the GTP-tubulin containing cap from the GDP-tubulin containing microtubule shaft. However, alterations in protofilament twist may be transiently needed to allow lattice compaction and GTP hydrolysis. Together, our results provide insights into the structural origin of GTP cap stability, the pathway of GTP hydrolysis and hence microtubule dynamic instability.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-025-57555-6DOI Listing

Publication Analysis

Top Keywords

gtp cap
20
gtp
11
gtp hydrolysis-deficient
8
hydrolysis-deficient tubulin
8
tubulin mutants
8
faithful gtp
8
protofilament twist
8
gtp hydrolysis
8
cap
6
hydrolysis-deficient
4

Similar Publications

A critical feature of microtubules is their GTP cap, a stabilizing GTP-tubulin rich region at growing microtubule ends. Microtubules polymerized in the presence of GTP analogs or from GTP hydrolysis-deficient tubulin mutants have been used as GTP-cap mimics for structural and biochemical studies. However, these analogs and mutants generate microtubules with diverse biochemical properties and lattice structures, leaving it unclear what is the most faithful GTP mimic and hence the structure of the GTP cap.

View Article and Find Full Text PDF

Circular RNA ZNF277 Sponges miR-378d to Inhibit the Intracellular Survival of by Upregulating Rab10.

Cells

February 2025

National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.

Circular RNAs (circRNAs) are covalently closed non-coding RNAs formed by back-splicing, lacking a 5' cap and poly-A tail. They could act as important regulatory factors in the host's anti-tuberculosis immune process, but only a few have been identified, and their molecular mechanisms remain largely unclear. Here, we identified a novel circRNA, circ-ZNF277, which responds to () infection in THP-1 cells.

View Article and Find Full Text PDF

A general framework to analyze potential roles of tDRs in mammalian protein synthesis.

Methods Enzymol

February 2025

Division of Rheumatology, Inflammation and Immunity, Brigham and Women's, Hospital, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States. Electronic address:

tRNA-derived RNAs (tDRs) are a heterogeneous class of small non-coding RNAs that have been implicated in numerous biological processes including the regulation of mRNA translation. A subclass of tDRs called tRNA-derived stress-induced RNAs (tiRNAs) have been shown to participate in translational control under stress where specific tiRNAs repress protein synthesis. Here, we use a prototypical tiRNA (5'-tiRNA) that inhibits mRNA translation in vitro and in cells as a model to study potential roles of tDRs in translational control.

View Article and Find Full Text PDF

Tetraspanin CD81 serves as a functional entry factor for porcine circovirus type 2 infection.

J Virol

February 2025

Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.

Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated disease, clinically resulting in immunosuppression and co-infections with other pathogens in infected pigs. The mechanism of PCV2 infection remains unclear. In this study, we firstly found that the tetraspanin CD81 in PK-15 cells interacts with PCV2 Cap protein by using virus overlay protein-binding assay combined with mass spectrometry.

View Article and Find Full Text PDF

Doublecortin reinforces microtubules to promote growth cone advance in soft environments.

Curr Biol

December 2024

Department of Cell & Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA. Electronic address:

Doublecortin (DCX) is a microtubule (MT)-associated protein in immature neurons. DCX is essential for early brain development, and DCX mutations account for nearly a quarter of all cases of lissencephaly-spectrum brain malformations that arise from a neuronal migration failure through the developing cortex. By analyzing pathogenic DCX missense mutations in non-neuronal cells, we show that disruption of MT binding is central to DCX pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!