The next-generation gene editing tool, prime editing (PE), is adept at correcting point mutations precisely with high editing efficiency and rare off-target events and shows promising therapeutic value in treating hereditary diseases. Retinitis pigmentosa (RP) is the most common type of inherited retinal dystrophy and is characterized by progressive degeneration of retinal photoreceptors and, consequently, visual decline. To date, effective treatments for RP are lacking. Herein, a PE system is designed to target the PDE6B Y347X mutation in the rd1 mouse strain, a preclinical RP model. We screen and develop the PE system with epegRNA and RT, which is delivered via dual-AAV in vivo with an editing efficiency of 26.47 ± 13.35%, with negligible off-target effects confirmed by AID-Seq and PE-tag. Treatment with the PE system in vivo greatly restores PDE6B protein expression and protects rod cells from degeneration. Mouse behavioural experiments also show that compared with no treatment, prime editing inhibits vision deterioration in littermate rd1 mice. This study provides a therapeutic opportunity for the use of PE to correct mutated RPs at the genomic level.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-025-57628-6DOI Listing

Publication Analysis

Top Keywords

prime editing
12
retinitis pigmentosa
8
editing efficiency
8
editing
6
vivo prime
4
editing rescues
4
rescues photoreceptor
4
photoreceptor degeneration
4
degeneration nonsense
4
nonsense mutant
4

Similar Publications

Molecular breeding of pigs in the genome editing era.

Genet Sel Evol

March 2025

College of Animal Sciences, Jilin University, Changchun, 130062, China.

Background: To address the increasing demand for high-quality pork protein, it is essential to implement strategies that enhance diets and produce pigs with excellent production traits. Selective breeding and crossbreeding are the primary methods used for genetic improvement in modern agriculture. However, these methods face challenges due to long breeding cycles and the necessity for beneficial genetic variation associated with high-quality traits within the population.

View Article and Find Full Text PDF

The next-generation gene editing tool, prime editing (PE), is adept at correcting point mutations precisely with high editing efficiency and rare off-target events and shows promising therapeutic value in treating hereditary diseases. Retinitis pigmentosa (RP) is the most common type of inherited retinal dystrophy and is characterized by progressive degeneration of retinal photoreceptors and, consequently, visual decline. To date, effective treatments for RP are lacking.

View Article and Find Full Text PDF

Aims/hypothesis: Components of the insulin processing and secretion pathways remain incompletely understood. Here, we examined a genome-wide association study (GWAS) signal for plasma proinsulin levels. Lead GWAS variant rs150781447-T encodes an Arg279Cys substitution in TBC1 domain family member 30 (TBC1D30), but no role for this protein in insulin processing or secretion has been established previously.

View Article and Find Full Text PDF

Human genome sequencing efforts in healthy and diseased individuals continue to identify a broad spectrum of genetic variants associated with predisposition, progression, and therapeutic outcomes for diseases like cancer . Insights derived from these studies have significant potential to guide clinical diagnoses and treatment decisions; however, the relative importance and functional impact of most genetic variants remain poorly understood. Precision genome editing technologies like base and prime editing can be used to systematically engineer and interrogate diverse types of endogenous genetic variants in their native context .

View Article and Find Full Text PDF

Mouse models represent a powerful platform to study genes and variants associated with human diseases. While genome editing technologies have increased the rate and precision of model development, predicting and installing specific types of mutations in mice that mimic the native human genetic context is complicated. Computational tools can identify and align orthologous wild-type genetic sequences from different species; however, predictive modeling and engineering of equivalent mouse variants that mirror the nucleotide and/or polypeptide change effects of human variants remains challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!