Structural basis for Ebola virus nucleocapsid assembly and function regulated by VP24.

Nat Commun

Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.

Published: March 2025

The Ebola virus, a member of the Filoviridae family, causes severe hemorrhagic fever in humans. Filamentous virions contain a helical nucleocapsid responsible for genome transcription, replication, and packaging into progeny virions. The nucleocapsid consists of a helical nucleoprotein (NP)-viral genomic RNA complex forming the core structure, to which VP24 and VP35 bind externally. Two NPs, each paired with a VP24 molecule, constitute a repeating unit. However, the detailed nucleocapsid structure remains unclear. Here, we determine the nucleocapsid-like structure within virus-like particles at 4.6 Å resolution using single-particle cryo-electron microscopy. Mutational analysis identifies specific interactions between the two NPs and two VP24s and demonstrates that each of the two VP24s in different orientations distinctively regulates nucleocapsid assembly, viral RNA synthesis, intracellular transport of the nucleocapsid, and infectious virion production. Our findings highlight the sophisticated mechanisms underlying the assembly and functional regulation of the nucleocapsid and provide insights into antiviral development.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-025-57236-4DOI Listing

Publication Analysis

Top Keywords

ebola virus
8
nucleocapsid assembly
8
nucleocapsid
7
structural basis
4
basis ebola
4
virus nucleocapsid
4
assembly function
4
function regulated
4
regulated vp24
4
vp24 ebola
4

Similar Publications

Structural basis for Ebola virus nucleocapsid assembly and function regulated by VP24.

Nat Commun

March 2025

Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.

The Ebola virus, a member of the Filoviridae family, causes severe hemorrhagic fever in humans. Filamentous virions contain a helical nucleocapsid responsible for genome transcription, replication, and packaging into progeny virions. The nucleocapsid consists of a helical nucleoprotein (NP)-viral genomic RNA complex forming the core structure, to which VP24 and VP35 bind externally.

View Article and Find Full Text PDF

VITALdb: to select the best viroinformatics tools for a desired virus or application.

Brief Bioinform

March 2025

Computational Biology and Translational Bioinformatics (CBTB) Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.

The recent pandemics of viral diseases, COVID-19/mpox (humans) and lumpy skin disease (cattle), have kept us glued to viral research. These pandemics along with the recent human metapneumovirus outbreak have exposed the urgency for early diagnosis of viral infections, vaccine development, and discovery of novel antiviral drugs and therapeutics. To support this, there is an armamentarium of virus-specific computational tools that are currently available.

View Article and Find Full Text PDF

Unlabelled: The Marburg virus (MARV), a member of the family Filoviridae, is a highly pathogenic virus causing severe hemorrhagic fever with extremely high mortality in humans and non-human primates. The MARV exhibits clinical and epidemiological features almost identical to those of the Ebola virus, no licensed vaccines or antiviral treatments have been developed yet for MARV. However, only a few treatments that remain uncertain of the disease are available to help bring a case for a new therapeutic approach.

View Article and Find Full Text PDF

Unlabelled: Filoviruses pose a significant threat to human health with frequent outbreaks and high mortality. Although two vector-based vaccines are available for Ebola virus, a broadly protective filovirus vaccine remains elusive. In this study, we evaluate a general strategy for stabilizing glycoprotein (GP) structures of Ebola, Sudan, and Bundibugyo ebolaviruses and Ravn marburgvirus.

View Article and Find Full Text PDF

Using a phylogenetic framework to characterize natural selection, we investigate the hypothesis that zoonotic viruses require adaptation prior to zoonosis to sustain human-to-human transmission. Examining the zoonotic emergence of Ebola virus, Marburg virus, influenza A virus, SARS-CoV, and SARS-CoV-2, we find no evidence of a change in the intensity of natural selection immediately prior to a host switch, compared with typical selection within reservoir hosts. We conclude that extensive pre-zoonotic adaptation is not necessary for human-to-human transmission of zoonotic viruses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!