Design and Application of Fluorescent Probes Based on Flavonoid Dyes for Cysteine Detection.

J Fluoresc

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China.

Published: March 2025

As an important reactive sulfur species, cysteine plays a crucial role in maintaining the body's redox homeostasis and regulating protein function. Its content in organisms can serve as signaling molecules to directly or indirectly detect certain diseases. Therefore, based on the Michael addition mechanism, five flavonoid fluorescent probes HFL1-5 were designed and synthesized to detect cysteine. Through specific descriptions of IR,H NMR and HRMS experiments, the recognition mechanism of cysteine by HFL was studied, demonstrating that HFL1-5 could generate flavonol derivatives with strong fluorescence emission through addition-cyclization-removal. The probes were evaluated for large Stokes shift, sensitivity, stability, specificity and cytotoxicity. Finally, the best performing HFL5 was selected for cell imaging experiments and successfully applied to the imaging of endogenous and exogenous cysteine in L929 cells. This study indicates that HFL has great potential for application in detecting cysteine. We hope to provide experimental data support for future structure-activity research.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-025-04226-wDOI Listing

Publication Analysis

Top Keywords

fluorescent probes
8
cysteine
6
design application
4
application fluorescent
4
probes based
4
based flavonoid
4
flavonoid dyes
4
dyes cysteine
4
cysteine detection
4
detection reactive
4

Similar Publications

Biological Regulation Studied and with Modified Proteins.

Acc Chem Res

March 2025

Center for BioEnergetics, Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.

ConspectusProteins and peptides occur ubiquitously in organisms and play key functional roles, as structural elements and catalysts. Their major natural source is ribosomal synthesis, which produces polypeptides from 20 amino acid building blocks. Peptides containing noncanonical amino acids have long been prepared by chemical synthesis, which has provided a wealth of physiologically active compounds.

View Article and Find Full Text PDF

Surface Grafting of Graphene Flakes with Fluorescent Dyes: A Tailored Functionalization Approach.

Nanomaterials (Basel)

February 2025

NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.

The controlled functionalization of graphene is critical for tuning and enhancing its properties, thereby expanding its potential applications. Covalent functionalization offers a deeper tuning of the geometric and electronic structure of graphene compared to non-covalent methods; however, the existing techniques involve side reactions and spatially uncontrolled functionalization, pushing research toward more selective and controlled methods. A promising approach is 1,3-dipolar cycloaddition, successfully utilized with carbon nanotubes.

View Article and Find Full Text PDF

Fluor-Predictor: An Interpretable Tool for Multiproperty Prediction and Retrieval of Fluorescent Dyes.

J Chem Inf Model

March 2025

Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.

With the rapid advancements in the field of fluorescent dyes, accurate prediction of optical properties and efficient retrieval of dye-related data are essential for effective dye design. However, there is a lack of tools for comprehensive data integration and convenient data retrieval. Moreover, existing prediction models mainly focus on a single property of fluorescent dyes and fail to account for the diverse fluorophores and solutions in a systematic manner.

View Article and Find Full Text PDF

Redox-Sensitive Fluorescent Nanoparticles for Biovisualization of Malignant Tumors.

Sovrem Tekhnologii Med

March 2025

DSc, Leading Researcher; ITMO University, 49, Bldg. A, Kronverksky Pr., Saint Petersburg, 197101, Russia.

Unlabelled: Application of fluorescent redox-sensitive nanoparticles in current biomedicine ensures high sensitivity and accuracy of biovisualization. Nanoparticles are potent as they can long circulate in the blood, where the level of glutathione is relatively low, and are destroyed in tumor cells, releasing loaded dyes or drugs. was to develop new nanoparticles based on trithiocyanuric acid for biovisualization of malignant tumors and study capabilities of the developed nanoparticles.

View Article and Find Full Text PDF

A lipid droplet-targeted probe for imaging of lipid metabolism disorders during mitochondrial myopathy.

Talanta

March 2025

State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China; Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China. Electronic address:

Lipid metabolism is closely related to various biological processes in cells. The accumulation of Lipid droplets (LDs) is a typical manifestation of certain metabolic diseases, such as mitochondrial myopathy, which shows a significant increase in LDs. The accumulation of LDs can exacerbate the progression of disease, and lysosomes selectively degrade LDs to cope with this phenomenon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!