As an important reactive sulfur species, cysteine plays a crucial role in maintaining the body's redox homeostasis and regulating protein function. Its content in organisms can serve as signaling molecules to directly or indirectly detect certain diseases. Therefore, based on the Michael addition mechanism, five flavonoid fluorescent probes HFL1-5 were designed and synthesized to detect cysteine. Through specific descriptions of IR,H NMR and HRMS experiments, the recognition mechanism of cysteine by HFL was studied, demonstrating that HFL1-5 could generate flavonol derivatives with strong fluorescence emission through addition-cyclization-removal. The probes were evaluated for large Stokes shift, sensitivity, stability, specificity and cytotoxicity. Finally, the best performing HFL5 was selected for cell imaging experiments and successfully applied to the imaging of endogenous and exogenous cysteine in L929 cells. This study indicates that HFL has great potential for application in detecting cysteine. We hope to provide experimental data support for future structure-activity research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10895-025-04226-w | DOI Listing |
Acc Chem Res
March 2025
Center for BioEnergetics, Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.
ConspectusProteins and peptides occur ubiquitously in organisms and play key functional roles, as structural elements and catalysts. Their major natural source is ribosomal synthesis, which produces polypeptides from 20 amino acid building blocks. Peptides containing noncanonical amino acids have long been prepared by chemical synthesis, which has provided a wealth of physiologically active compounds.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.
The controlled functionalization of graphene is critical for tuning and enhancing its properties, thereby expanding its potential applications. Covalent functionalization offers a deeper tuning of the geometric and electronic structure of graphene compared to non-covalent methods; however, the existing techniques involve side reactions and spatially uncontrolled functionalization, pushing research toward more selective and controlled methods. A promising approach is 1,3-dipolar cycloaddition, successfully utilized with carbon nanotubes.
View Article and Find Full Text PDFJ Chem Inf Model
March 2025
Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
With the rapid advancements in the field of fluorescent dyes, accurate prediction of optical properties and efficient retrieval of dye-related data are essential for effective dye design. However, there is a lack of tools for comprehensive data integration and convenient data retrieval. Moreover, existing prediction models mainly focus on a single property of fluorescent dyes and fail to account for the diverse fluorophores and solutions in a systematic manner.
View Article and Find Full Text PDFSovrem Tekhnologii Med
March 2025
DSc, Leading Researcher; ITMO University, 49, Bldg. A, Kronverksky Pr., Saint Petersburg, 197101, Russia.
Unlabelled: Application of fluorescent redox-sensitive nanoparticles in current biomedicine ensures high sensitivity and accuracy of biovisualization. Nanoparticles are potent as they can long circulate in the blood, where the level of glutathione is relatively low, and are destroyed in tumor cells, releasing loaded dyes or drugs. was to develop new nanoparticles based on trithiocyanuric acid for biovisualization of malignant tumors and study capabilities of the developed nanoparticles.
View Article and Find Full Text PDFTalanta
March 2025
State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China; Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China. Electronic address:
Lipid metabolism is closely related to various biological processes in cells. The accumulation of Lipid droplets (LDs) is a typical manifestation of certain metabolic diseases, such as mitochondrial myopathy, which shows a significant increase in LDs. The accumulation of LDs can exacerbate the progression of disease, and lysosomes selectively degrade LDs to cope with this phenomenon.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!