Breast cancer is the most common invasive cancer diagnosed in females and is also the main cause of cancer-related deaths leading to more than 500,000 deaths annually. The present study aims to identify a promising panel of microRNAs (miRNAs) using bioinformatics analysis, and to clinically validate their utility for diagnosing breast cancer patients with high accuracy in a clinical setting. First, in the in silico phase of our study, using bioinformatics analysis and the data available in the GEO database, miRNAs that were increased in the interstitial fluid of the tumor tissues (differentially expressed miRNAs), were screened and their related target genes were selected. Multimir package of R software was utilized to determine the target genes of the differentially expressed miRNAs (DEMs). The biological functions of discovered genes were analyzed using Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. In order to determine the molecular mechanisms behind important signaling pathways and cellular functions, the protein-protein interaction network was built using STRING and Cytoscape software. After that, in the laboratory phase, the expression level of three candidate miRNAs on the serum samples of 26 breast cancer patients and 26 control, as well as 14 tumor tissue samples and 14 adjacent normal tissue samples, has been investigated by Real-time PCR method. Then sensitivity and specificity of candidate miRNAs were evaluated through the ROC curve analysis. After in silico analysis, we revealed that three miRNAs including miR-4443, miR-572, and miR-150-5p were highly increased in the interstitial fluid of breast cancer patients compared to breast cancer tissues. Moreover, our results revealed that the expression level of miR-4443, miR-572, and miR-150-5p were significantly decreased in the serum of breast cancer patients compare to normal controls. Also, the expression level of miR-4443 and miR-150-5p was significantly decreased in the tumor tissue compared to the adjacent non-tumor tissue. Also, ROC curve analysis showed that these three miRNAs have high sensitivity and specificity for the diagnosis of breast cancer patients. Data analysis was conducted with GraphPad Prism software. Our findings suggest the potential utility of measuring tumor-derived miRNAs in serum as an important approach for the blood-based detection of breast cancer patients. It appears that miR-4443, miR-572, and miR-150-5p may serve as promising diagnostic biomarkers with high sensitivity and specificity. However, it's important to note that further research will be needed to definitively establish the use of these miRNAs as potential biomarkers in clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10528-025-11057-8 | DOI Listing |
Cancer Med
March 2025
Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Background: Tumor metastasis is one of the main causes of death in cancer patients; however, the mechanism controlling metastasis is unclear. The posttranscriptional regulation of metastasis-related genes mediated by AT-rich interactive domain-containing protein 4A (Arid4a), an RNA-binding protein (RBP), has not been elucidated.
Methods: Bioinformatic analysis, qRT-PCR, immunohistochemistry, and immunoblotting were employed to determine the expression of Arid4a in breast tumor tissues and its association with the survival of cancer patients.
Front Immunol
March 2025
Changchun University of Chinese Medicine, Changchun, China.
In recent years, tumor immunotherapy has made significant breakthroughs in the treatment of malignant tumors. However, individual differences in efficacy have been observed in clinical practice. There is increasing evidence that gut microbial metabolites influence the efficacy of distal tumor immunotherapy via the gut-liver axis, the gut-brain axis and the gut-breast axis, a process that may involve modulating the expression of immune cells and cytokines in the tumor microenvironment (TME).
View Article and Find Full Text PDFFront Immunol
March 2025
Division of Haematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan.
High tumour mutational burden (TMB-high), identified through comprehensive genomic profiling (CGP), is a biomarker that predicts the efficacy of immune checkpoint inhibitors. CGP testing is recommended for rare cancers with limited effective treatment options. Here, we provide the first report of a malignant phyllodes tumour of the breast demonstrating TMB-high status and effective treatment with pembrolizumab.
View Article and Find Full Text PDFFront Immunol
March 2025
Biotech Research and Innovation Center (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark.
Indian J Otolaryngol Head Neck Surg
January 2025
Department of Pathology, Faculty of Medicine, Shahed University, Tehran, Iran.
Unlabelled: Nasal polyp (NP) is a pathological benign mass that affects the nasal cavity and paranasal sinuses. This lesion is occasionally associated with chronic rhinosinusitis (CRS), which is named chronic rhinosinusitis with nasal polyps (CRSwNP). Proliferating cell nuclear antigen (PCNA) indicates abnormal cell proliferation which may help assess the nasopharyngeal lesions and upper airway cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!