Mitochondrial homeostasis plays a major role in the progression of chronic inflammatory bone loss which has a complex pathogenesis with unsatisfactory therapeutic efficiency. Recently, melatonin has been shown to recipient mitochondrial function and bone formation. However, the effects and underlying molecular mechanism of melatonin in chronic inflammatory bone loss remain unclear. Here, we reported that melatonin ameliorated lipopolysaccharide (LPS)-induced inflammatory bone loss by improving osteogenesis. We found that melatonin rescued LPS-induced mitochondrial dysfunction and metabolic reprogramming in osteoblasts, resulting in reduced osteogenesis impairment. Mechanistically, melatonin inhibited mitochondrial reactive oxygen species (mtROS) production by suppressing LPS-induced mitophagy, which attenuated the activation of the mtROS/HIF-1α/pyruvate dehydrogenase kinase 1 (PDK1) axis. Moreover, melatonin restored pyruvate dehydrogenase (PDH) activity by inhibiting phosphorylation of PDH through the mtROS/HIF-1α/PDK1 axis and eventually downregulated lactate production. These findings indicate the therapeutic effects of melatonin against chronic inflammatory bone loss and demonstrated a potential treatment strategy against inflammatory osteogenic disorders through regulating mitochondrial dysfunction and metabolic reprogramming.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10495-025-02096-yDOI Listing

Publication Analysis

Top Keywords

inflammatory bone
20
bone loss
20
chronic inflammatory
12
melatonin
8
lactate production
8
melatonin chronic
8
dysfunction metabolic
8
metabolic reprogramming
8
bone
6
inflammatory
5

Similar Publications

Cystatin C is associated with osteoporosis and fractures: An observational study based on Mendelian randomization analysis.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

October 2024

Research for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou Jiangsu 215123, China.

Objectives: Osteoporosis is characterized by decreased bone mass and damaged bone microstructure, often leading to fragility fractures. Low bone mineral density is a key risk factor for fractures. Serum cystatin C (CysC), an endogenous marker of glomerular filtration rate, is negatively correlated with bone mineral density and may be a potential risk factor for osteoporosis.

View Article and Find Full Text PDF

ZNF667 alleviates the inflammatory damage in intervertebral disc degeneration via inhibiting NF-κB signaling pathway.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

October 2024

Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China.

Objectives: With the aging population, the incidence of intervertebral disc degeneration (IDD) is increasing every year. The pathogenesis of IDD is complex, and there are currently no effective treatment options. This study aims to investigate the specific function and underlying mechanism of zinc finger protein 667 (ZNF667) in the inflammatory damage of nucleus pulposus cells in IDD.

View Article and Find Full Text PDF

Modified expression of JAK-STAT pathway genes in an in vivo rheumatoid arthritis model: A preclinical study to explore genetic insights.

Biochim Biophys Acta Mol Basis Dis

March 2025

Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Sindh, Pakistan. Electronic address:

Background: Rheumatoid arthritis (RA) is a chronic inflammatory disease characterised by inflammatory synovial tissue, joint deterioration, and effects on systems other than the joints. The biological process underlying the progression of the disease remains unknown, however cell-mediated immunity plays an important part in the onset of RA. The current study investigated the involvement of the JAK-STAT pathway genes (JAK-1, IL-6, and SOCS-2) in the pathogenesis of RA (Rheumatoid arthritis).

View Article and Find Full Text PDF

Periodontitis is one of the major oral health issues worldwide, with significant impacts on oral health and patients's quality of life, but current therapies have not achieved optimal regeneration of periodontal tissue. This study developed scaffolds using natural tussah silk fibroin (TSF) cross-linked with regenerated silk fibroin (SF) nanofibers to improve mechanical properties and wet-state stability. Zinc oxide (ZnO) and polydopamine (PDA) composite nanoparticles were loaded into scaffold to impart its antibacterial and photothermal properties to construct a photo-responsive composite scaffold (ZnO/PDA/TSF-SF).

View Article and Find Full Text PDF

Infected bone defects show a significant reduction in neovascularization during the healing process, primarily due to persistent bacterial infection and immune microenvironmental disorders. Existing treatments are difficult to simultaneously meet the requirements of antibacterial and anti-inflammatory treatments for infected bone defects, which is a key clinical therapeutic challenge that needs to be addressed. In this study, a conductive hydrogel based on copper nanoparticles was developed for controlling bacterial infection and remodeling the immune microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!