Cell death is a crucial mechanism through which cells respond to damage and stress, thereby maintaining homeostasis. Cell death pathways include both caspase-dependent and caspase-independent mechanisms, such as apoptosis, necrosis, autophagy, and ferroptosis. The recent discovery of oxeiptosis identifies a unique form of ROS-mediated, caspase-independent cell death with apoptotic-like features. This process is regulated by key molecules, including KEAP1, PGAM5, and AIFM1, and is characterized by distinct molecular and morphological features. These regulators contribute to cellular integrity by activating cytoprotective genes through Nrf2 stabilization by KEAP1 and maintaining cellular homeostasis via PGAM5-mediated AIFM1 Ser116 dephosphorylation. In this review, we discuss the broad spectrum of oxeiptosis-mediated regulation in disease pathogenesis by combating ROS-induced cellular damage. Modulating oxeiptosis helps in disease management by mitigating ROS-induced cellular damage, restoring redox balance, and preventing pathological inflammation. Additionally, we highlight modulators such as natural derivatives and lncRNAs that trigger oxeiptosis in various diseases, including vitiligo, psoriasis, and multiple cancer types. Modulating oxeiptosis presents significant clinical implications by offering novel therapeutic strategies to mitigate oxidative stress, restore cellular homeostasis, and prevent inflammation-driven diseases. This review emphasizes potential therapeutic advances for conditions characterized by aberrant ROS accumulation, offering innovative avenues for clinical intervention and treatment development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10495-025-02087-z | DOI Listing |
FASEB J
March 2025
Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.
Glaucoma, a leading cause of irreversible blindness, is characterized by the progressive loss of retinal ganglion cells (RGCs) and optic nerve damage, often associated with elevated intraocular pressure (IOP). Retinoid X receptors (RXRs) are ligand-activated transcription factors crucial for neuroprotection, as they regulate gene expression to promote neuronal survival via several biochemical networks and reduce neuroinflammation. This study investigated the therapeutic potential of 9-cis-13,14-dihydroretinoic acid (9CDHRA), an endogenous retinoid RXR agonist, in mitigating RGC degeneration in a high-IOP-induced experimental model of glaucoma.
View Article and Find Full Text PDFAdv Healthc Mater
March 2025
Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
Intervertebral disc degeneration (IVDD) is a major cause of low back pain, where oxidative stress and mitochondrial dysfunction are key contributors. Additionally, ferroptosis, an iron-dependent form of cell death, is identified as a critical mechanism in IVDD pathogenesis. Herein, the therapeutic potential of gallic acid (GA)-derived PGA-Cu nanoparticles, enhanced with functional octapeptide (Cys-Lys-His-Gly-d-Arg-d-Tyr-Lys-Phe, SS08) to build the mitochondria-targeted nanoparticles (PGA-Cu@SS08), and embedded within a hydrogel matrix to form a nanocomposite hydrogel, is explored.
View Article and Find Full Text PDFFront Immunol
March 2025
People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
Cardiovascular disease (CVD) continues to be the leading cause of mortality worldwide. The nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is involved in numerous types of CVD. As part of innate immunity, the NLRP3 inflammasome plays a vital role, requiring priming and activation signals to trigger inflammation.
View Article and Find Full Text PDFImmune Netw
February 2025
College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
Ferroptosis, an iron-dependent form of regulated cell death, is driven by lipid peroxidation and shaped by metabolic and antioxidant pathways. In immune cells, ferroptosis susceptibility varies by cell types, lipid composition, and metabolic demands, influencing immune responses in cancer, infections, and autoimmune diseases. Therapeutically, targeting ferroptosis holds promise in cancer immunotherapy by enhancing antitumor immunity or inhibiting immunosuppressive cells.
View Article and Find Full Text PDFBiosaf Health
October 2024
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
The vaccinia virus Tiantan (VTT) is widely utilized as a smallpox vaccine in China and holds significant importance in the prevention of diseases stemming from poxvirus infections. Nevertheless, few studies have investigated the influence of VTT infection on host gene expression. In this study, we constructed time series transcriptomic profiles of HeLa cells infected with both VTT and western reserve (WR) strains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!