Obesity and type-2 diabetes mellitus (T2DM) are interrelated metabolic disorders primarily driven by overnutrition and physical inactivity, which oftentimes entails a transition from obesity to T2DM. Compromised musculoskeletal health consistently emerges as a common hallmark in the progression of these metabolic disorders. Skeletal muscle atrophy and dysfunction can further impair whole-body metabolism and reduce physical exercise capacity, thus instigating a vicious cycle that further deteriorates the underlying conditions. However, the myocellular repercussions of these metabolic disturbances remain to be completely clarified. Insulin signaling not only facilitates skeletal muscle glucose uptake but also plays a central role in skeletal muscle anabolism mainly due to suppression of catabolic pathways and facilitating an anabolic response to nutrient feeding. Chronic overnutrition may trigger different myocellular mechanisms proposed to contribute to insulin resistance and aggravate skeletal muscle atrophy and dysfunction. These mechanisms mainly include the inactivation of insulin signaling components through sustained activation of stress-related pathways, mitochondrial dysfunction, a shift to glycolytic skeletal muscle fibers, and hyperglycemia. In the present review, we aim to delve on these mechanisms, providing an overview of the myocellular processes involved in skeletal muscle atrophy and dysfunction under chronic overnutrition, and their contribution to the progression to T2DM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11154-025-09954-9 | DOI Listing |
Dermatol Reports
February 2025
Division of Regenerative and Oncological Dermatological Surgery, Modena University Hospital.
In patients with epidermolysis bullosa (EB), surgery may be required to remove squamous cell carcinoma (SCC) of the hands or to correct pseudo-syndactyly. Dermal substitutes may represent a suitable tool to promote the healing of surgical wounds in EB. We review our experience with a collagen-elastin dermal matrix to promote surgical wound healing due to hand surgery to correct pseudo-syndactyly or SCC resection in patients affected by EB.
View Article and Find Full Text PDFAging Dis
March 2025
Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
With the growing interest in skeletal muscle diseases, understanding the processes, factors, and treatments associated with muscle regeneration is crucial. Skeletal muscle regeneration is a complex process that largely depends on the niche composed of cell populations, such as satellite cells, and their microenvironment. Cellular senescence is associated with various physiological processes and age-related diseases and plays a significant role in the muscle regeneration niche.
View Article and Find Full Text PDFCells
March 2025
Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Afairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
Non-coding genes, such as microRNA and lncRNA, which have been widely studied, play an important role in the regulatory network of skeletal muscle development. However, the functions and mechanisms of most non-coding RNAs in skeletal muscle regulatory networks are unclear. This study investigated the function and mechanism of in muscle growth and development.
View Article and Find Full Text PDFCells
March 2025
Department of Biology, Developmental Biology, Philipps University Marburg, Karl-von-Frisch Str. 8, 35037 Marburg, Germany.
MicroRNAs function as post-transcriptional regulators in gene expression and control a broad range of biological processes in metazoans. The formation of multinucleated muscles is essential for locomotion, growth, and muscle repair. microRNAs have also emerged as important regulators for muscle development and function.
View Article and Find Full Text PDFCells
February 2025
Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan.
Background: Skeletal muscle wasting is commonly observed in aging, immobility, and chronic diseases. In pathological conditions, the impairment of skeletal muscle and immune system often occurs simultaneously. Recent studies have highlighted the initiative role of skeletal muscle in interactions with immune cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!