Background: Recently, oxidative stress and inflammatory responses have been shown to directly impact tumor growth and the tumor microenvironment (TME). However, more research is necessary to fully understand the relationship between oxidative stress and inflammatory responses and colorectal cancer (CRC).

Methods: The FindCluster algorithm was used to extract CRC Single-cell RNA sequencing (scRNA-seq) data and identify tumor cell groupings. From the MSigDB database, genes associated with oxidative stress and the inflammatory response were taken. We identified molecular subtypes and built a predictive risk model with the LASSO-Cox method using the ConsensusClusterPlus software suite. We incorporated the prognostic risk model and other clinicopathological parameters into a column-line chart. Finally, we used Quantitative Polymerase Chain Reaction (qPCR) and immunohistochemistry to check the expression of the unreported hub model genes. Cell proliferation was assessed using EDU and colony formation assays. Reactive Oxygen Species (ROS) tests were used to quantitatively determine the ROS content in CRC cells. The ability of CRC cells to invade and migrate was examined using transwell experiments. The regulatory functions of hub model genes were discovered in vivo using a xenograft model tumor assay.

Results: Oxidative stress and inflammatory response factors in monocytic/macrophages of CRC were significantly upregulated, and their oxidative stress and inflammatory response functions were significantly higher than those of other cell subgroups, as indicated by the enrichment score. These factors showed significant synergistic overexpression and enrichment in this cell population. We constructed a prognostic risk model consisting of seven signatures. The good and stable prognostic evaluation efficacy of the model was confirmed, and risk scores were determined to be independent prognostic factors for CRC. We explored the relationship between the risk score model and malignant progression of tumor cells, tumor immune microenvironment, genomic variation, chemotherapy resistance, and immune response. Further qPCR and immunohistochemistry analysis showed that the expression of ZNF385A was high in CRC tissues. The functional experiment results indicated that interfering with the expression of ZNF385A could suppress the proliferation, ROS, migration and invasion of SW620 cells in vitro and the growth of xenograft tumors in vivo.

Conclusion: In this study, we investigated the critical expression patterns of oxidative stress- and inflammatory response-related genes in CRC, which may contribute to the prognosis and immunotherapy of CRC. Additionally, we discovered ZNF385A to be a novel oncogene in CRC. These findings imply that this model may be applied to assess prognostic risk and identify potential therapeutic targets for CRC patients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12672-025-02024-1DOI Listing

Publication Analysis

Top Keywords

oxidative stress
24
stress inflammatory
24
inflammatory response
16
risk model
12
prognostic risk
12
crc
10
model
9
inflammatory responses
8
qpcr immunohistochemistry
8
hub model
8

Similar Publications

Background: This study aimed to investigate the effects of total antioxidant capacity (T-AOC), superoxide dismu-tase (SOD), and malondialdehyde (MDA) in blood on the postoperative wound healing process of patients with severe burns treated by Meek micrografting.

Methods: In total, 154 patients with severe burns who underwent Meek micrografting treatment were selected as the observation group, and 80 healthy people were taken as the control group. General clinical data were collected, and serum T-AOC, SOD, and MDA were analyzed by biochemical analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Asthma is a chronic respiratory disease involving inflammation and other respiratory issues, with mitochondria playing a crucial role in its underlying mechanisms.
  • A bibliometric analysis of research from 2004 to mid-2024 identified 669 publications, showing significant growth in studies since 2015, primarily from the US, China, and the UK.
  • Key themes include mitochondrial dysfunction and oxidative stress, with emerging research focusing on mitochondrial biogenesis and the NLRP3 inflammasome, suggesting opportunities for new therapeutic strategies targeting mitochondria in asthma treatment.
View Article and Find Full Text PDF

Periodontitis is a significant global public health issue associated with the onset and progression of various systemic diseases, thereby requiring additional research and clinical attention. Although ferroptosis and cuproptosis have emerged as significant areas of research in the medical field, their precise roles in the pathogenesis of periodontitis remain unclear. We aim to systematically summarize the current research on ferroptosis and cuproptosis in periodontal disease and investigate the roles of glutathione pathway and autophagy pathway in connecting ferroptosis and cuproptosis during periodontitis.

View Article and Find Full Text PDF
Article Synopsis
  • The respiratory system is vital for oxygen absorption and carbon dioxide expulsion, helping to maintain the body's acid-base balance and metabolic stability.
  • The outbreak of COVID-19 has highlighted the need for new treatments for respiratory diseases, leading to renewed interest in Tanshinone IIA, a bioactive compound traditionally used for heart diseases.
  • Research shows Tanshinone IIA has various therapeutic effects, including anti-inflammatory and anti-cancer properties, and it shows promise in treating conditions like asthma and lung cancer, making it a valuable focus for future studies.
View Article and Find Full Text PDF

Ferroptosis, pathogenesis and therapy in AS co-depression disease.

Front Pharmacol

February 2025

School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, China.

Atherosclerosis (AS)-related cardiovascular disease and depression are often comorbid, with patients with cardiovascular disease facing an increased risk of depression, which worsens AS. Both diseases are characterized by oxidative stress and lipid metabolism disorders. Ferroptosis, a form of cell death characterized by iron overload and harmful lipid peroxide accumulation, is found in various diseases, including AS and depression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!