Targeting EGFR and PI3K/mTOR pathways in glioblastoma: innovative therapeutic approaches.

Med Oncol

Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy (an Autonomous College), Moga, Punjab, 142001, India.

Published: March 2025

Glioblastoma (GBM) stands as the most aggressive form of primary brain cancer in adults, characterized by its rapid growth, invasive nature, and a robust propensity to induce angiogenesis, forming new blood vessels to sustain its expansion. GBM arises from astrocytes, star-shaped glial cells, and despite significant progress in understanding its molecular mechanisms, its prognosis remains grim. It is frequently associated with mutations or overexpression of the epidermal growth factor receptor (EGFR), which initiates several downstream signaling pathways. Dysregulation of key signaling pathways, such as EGFR/PTEN/AKT/mTOR, drives tumorigenesis, promotes metastasis and leads to treatment resistance. The modest survival benefits of the conventional treatment of surgical resection followed by radiation and chemotherapy underscore the pressing need for innovative therapeutic approaches. In most the tumor, overexpression of EGFR is found associated with GBM and mutations in its several variants are important for promoting ongoing mitogenic signaling and tumor growth. This receptor inhibits apoptosis and promotes cell survival and proliferation by activating downstream PI3K/AKT/mTOR pathways. This route is typically blocked by PTEN, a crucial tumor suppressor, however, GBM frequently results in abnormalities in this protein. The aim of this review is to explore the molecular foundations of GBM, with a focus on the EGFR and PI3K/mTOR pathways and their impact on tumor behavior. Additionally, this review highlights EGFR and PI3K/AKT/mTOR inhibitors currently in clinical and preclinical trials, addressing treatment resistance, challenges, and future directions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12032-025-02652-1DOI Listing

Publication Analysis

Top Keywords

egfr pi3k/mtor
8
pi3k/mtor pathways
8
innovative therapeutic
8
therapeutic approaches
8
signaling pathways
8
treatment resistance
8
pathways
5
gbm
5
targeting egfr
4
pathways glioblastoma
4

Similar Publications

Glioblastoma (GBM) stands as the most aggressive form of primary brain cancer in adults, characterized by its rapid growth, invasive nature, and a robust propensity to induce angiogenesis, forming new blood vessels to sustain its expansion. GBM arises from astrocytes, star-shaped glial cells, and despite significant progress in understanding its molecular mechanisms, its prognosis remains grim. It is frequently associated with mutations or overexpression of the epidermal growth factor receptor (EGFR), which initiates several downstream signaling pathways.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) L858R/T790 M mutation-mediated gefitinib resistance (GR) is a frequent dilemma in the treatment of non-small cell lung cancer (NSCLC). This study aimed to explore the effect of jatrorrhizine on treating GR NSCLC and its possible mechanism of action. Cell viability, migration, invasion, and apoptosis detection were used to study the effect of jatrorrhizine on suppressing H1975 cells.

View Article and Find Full Text PDF

Structural characterization of Aurora kinase B modulation by Epigallocatechin gallate: Insights from docking and dynamics simulations.

J Mol Graph Model

May 2025

Structural Biology Lab, Pearl Research Park, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India. Electronic address:

Aurora Kinase B (AURKB) is crucial for chromosome alignment, segregation, and cytokinesis, phosphorylating essential proteins for accurate cell division. Mutations and overexpression of AURKB are common in various cancers. Inhibiting AURKB reduces therapy resistance, making it a promising therapeutic target.

View Article and Find Full Text PDF

In this study, a patient with lung adenocarcinoma harboring an EGFR mutation exhibited primary resistance to the targeted EGFR inhibitor Osimertinib after 2 months of treatment. As the disease advanced, further genetic analysis revealed the emergence of additional mutations in ARID1A, NTRK1, and ZRSR2, alongside the existing EGFR mutation. Subsequent treatment with Pemetrexed resulted in a significant reduction in liver metastases.

View Article and Find Full Text PDF

Repurposing Osimertinib and Gedatolisib for Glioblastoma Treatment: Evidence of Synergistic Effects in an In Vitro Phenotypic Study.

Pharmaceuticals (Basel)

December 2024

Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.

Glioblastoma is a malignant tumor with a poor prognosis for the patient due to its high lethality and limited chemotherapy available. Therefore, from the point of view of chemotherapy treatment, glioblastoma can be considered an unmet medical need. This has led to the investigation of new drugs for monotherapy or associations, acting by synergistic pharmacological mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!