Macrophages play a crucial role in cardiac remodeling and prognosis after myocardial infarction (MI). Our previous studies have built a scalable method for preparing scaled stem cell nanovesicles (NVs) and demonstrated their remarkable reparative effects on ischemic heart disease. To further enhance the targeted reparative capabilities of the NVs toward injured myocardium, we employed a dual modification strategy involving platelet membrane coating and miR-181a-5p loading, creating a nanovesicle termed P-181-NV. This study aimed to investigate the efficacy of P-181-NV in targeted reparative interventions for damaged myocardium and to reveal the underlying mechanisms involved. After successful construction and characteristic analysis of P-181-NV, the tracking techniques demonstrated a significant enhancement in the targeting capacity of P-181-NV toward the injured myocardium. Moreover, P-181-NV showed marked improvements in cardiac function and remodeling as observed through ultrasound echocardiography and Masson's trichrome staining. Furthermore, P-181-NV significantly augmented myocardial cell viability, angiogenic potential, and the polarization ratio of the anti-inflammatory macrophages. The findings of this study underscore the pivotal role of platelet-membrane-coated and miR-181a-5p modified stem cell nanovesicles in facilitating postmyocardial infarction cardiac repair. By modulating macrophage polarization, P-181-NV offers a promising approach for enhancing the efficacy of targeted reparative interventions for damaged myocardium. These results contribute to our understanding of the potential of nanovesicles as therapeutic agents for cardiac repair and regeneration, presenting avenues for future research and clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c19325DOI Listing

Publication Analysis

Top Keywords

cardiac repair
12
targeted reparative
12
platelet membrane
8
macrophage polarization
8
stem cell
8
cell nanovesicles
8
injured myocardium
8
reparative interventions
8
interventions damaged
8
damaged myocardium
8

Similar Publications

Background: Acute Stanford type A aortic dissection is a severe emergency condition that, if left untreated, is associated with a high mortality rate. The extent of surgical repair may impact the outcomes of these patients.

Method: Patients operated for acute type A aortic dissection from a multicentre European registry were included.

View Article and Find Full Text PDF

Background: Mitral valve transcatheter edge-to-edge repair (M-TEER) is increasingly applied in patients with high surgical risk. We aimed to evaluate whether the PASCAL system can be applied in an all-comers cohort irrespective of the underlying anatomy and whether technical features influence therapeutic success.

Methods: In this prospective, observational study we enrolled consecutive patients (n = 80) with mitral regurgitation (MR) 3+ and 4+ scheduled for M-TEER.

View Article and Find Full Text PDF

Cardiac remodelling, a pathological process induced by various cardiovascular diseases, remains a significant challenge in clinical practice. Here, we investigate the potential of Danuglipron (PF-06882961, PF), a novel oral glucagon-like peptide-1 (GLP-1) receptor agonist, in alleviating pressure overload (PO)-induced cardiac hypertrophy and fibrosis. Using both in vivo and in vitro models, we demonstrate that PF treatment (1 mg/kg/day, orally for 8 weeks) significantly attenuates aortic banding-induced cardiac dysfunction and pathological remodelling in mice.

View Article and Find Full Text PDF

A Novel Disulfidptosis-Related Diagnostic Gene Signature and Differential Expression Validation in Ischaemic Cardiomyopathy.

J Cell Mol Med

March 2025

Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, China.

Ischaemic cardiomyopathy (IC) predominantly arises from prolonged deprivation of oxygen in the coronary arteries, resulting in compromised cardiac contractility or relaxation. This study investigates the role of disulfidptosis-associated genes (DiGs) in IC. Through the analysis of datasets GSE5406 and GSE57338, we explored the association between DiGs and immune characteristics to identify crucial genes contributing to IC development.

View Article and Find Full Text PDF

Infective endocarditis remains a deadly disease with a significant mortality rate. While ventricular septal defects (VSDs) have been linked to an increased risk of infective endocarditis, cases of acquired VSDs resulting from infective endocarditis are not well-documented in the literature. Our report highlights a rare case of acquired VSD that resulted directly from aortic valve endocarditis, treated with successful repair and placement of permanent pacemaker.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!