The increasing ethical concerns and regulatory restrictions surrounding animal testing have accelerated the development of advanced models that more accurately replicate human physiology. Among these, stem cell-based systems and organoids have emerged as revolutionary tools, providing ethical, scalable, and physiologically relevant alternatives. This review explores the key trends and driving factors behind the adoption of these models, such as technological advancements, the principles of the 3Rs (Replacement, Reduction, and Refinement), and growing regulatory support from agencies like the OECD and FDA. It also delves into the development and application of various model systems, including 3D reconstructed tissues, induced pluripotent stem cell-derived cells, and microphysiological systems, highlighting their potential to replace animal models in toxicity evaluation, disease modeling, and drug development. A critical aspect of implementing these models is ensuring robust quality control protocols to enhance reproducibility and standardization, which is necessary for gaining regulatory acceptance. Additionally, we discuss advanced strategies for assessing toxicity and efficacy, focusing on organ-specific evaluation methods and applications in diverse fields such as pharmaceuticals, cosmetics, and food safety. Despite existing challenges related to scalability, standardization, and regulatory alignment, these innovative models represent a transformative step towards reducing animal use and improving the relevance and reliability of preclinical testing outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.15283/ijsc24118 | DOI Listing |
J Biomater Appl
March 2025
Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong, China.
Colorectal cancer is the fourth leading cause of cancer-related deaths worldwide. Capecitabine is a chemotherapeutic agent commonly used for the treatment of colon cancer. To realize local sustained release, promote efficient local intracellular transport, and mitigate the systemic toxic effects of capecitabine, a capecitabine prodrug, capecitabine-poly (p-dioxanone) (Cap-PPDO), was successfully synthesized.
View Article and Find Full Text PDFBiometrics
January 2025
Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States.
SARS-CoV-2-infected individuals have reported a diverse collection of persistent and often debilitating symptoms commonly referred to as long COVID or post-acute sequelae of SARS-CoV-2 (PASC). Identifying PASC and its subphenotypes is challenging because available data are "negative-unlabeled" as uninfected individuals must be PASC negative, but those with prior infection have unknown PASC status. Moreover, feature selection among many potentially informative characteristics can facilitate reaching a concise and easily interpretable PASC definition.
View Article and Find Full Text PDFBiometrics
January 2025
Vanke School of Public Health, Tsinghua University, Beijing, 100084, China.
The segmented model has significant applications in scientific research when the change-point effect exists. In this article, we propose a comprehensive semiparametric framework in segmented models to test the existence and estimate the location of change points in the generalized outcome setting. The proposed framework is based on a semismooth estimating equation for the change-point estimation and an average score-type test for hypothesis testing.
View Article and Find Full Text PDFThe fusion kinetics of block copolymer micelles in dilute solutions have been investigated. As a model system, 1,2-polybutadiene--poly(ethylene oxide) micelles in the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate have been studied. The ionic liquid is a selective solvent for poly(ethylene oxide), promoting the self-assembly of the block copolymer into spherical micelles.
View Article and Find Full Text PDFJ Med Internet Res
March 2025
Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
Background: Hypertension is a major global health issue and a significant modifiable risk factor for cardiovascular diseases, contributing to a substantial socioeconomic burden due to its high prevalence. In China, particularly among populations living near desert regions, hypertension is even more prevalent due to unique environmental and lifestyle conditions, exacerbating the disease burden in these areas, underscoring the urgent need for effective early detection and intervention strategies.
Objective: This study aims to develop, calibrate, and prospectively validate a 2-year hypertension risk prediction model by using large-scale health examination data collected from populations residing in 4 regions surrounding the Taklamakan Desert of northwest China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!