Microdroplet-Mediated Enzyme Activity Enhancement for Potentiometric Sensing of Peroxidase in Soil.

Anal Chem

CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, People's Republic of China.

Published: March 2025

On-site measurements of enzyme activity in complex solid matrices such as soil and sediment could offer invaluable insights for the soil health evaluation and sustainable management. As such, sensors for on-site measurements of soil enzyme activity are highly required but remain unachieved to date. Herein, a potentiometric sensor for rapid, direct, and in-field analysis of soil enzyme activity is proposed, in which soil particle separation and soil enzyme extraction can be achieved within a single device. More importantly, the enzyme activity mediated by microdroplets can be greatly enhanced for potentiometric measurements. By using a classic soil redox enzyme-peroxidase and an anti-interference substrate 3,3',5,5'-tetramethylbenzidine as a model, the potentiometric sensor enables directly measuring peroxidase activity in the field with a detection limit that can reach as low as 10 U mL within 5 min. Moreover, the potentiometric sensor was deployed for on-site analysis of the peroxidase activity of (L.) Pall. rhizosphere soil under salinity stress, showing excellent sensitivity and anti-interference capability, and retaining promising potential for evaluating the mechanisms and feedback in response to environment stresses.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.5c00327DOI Listing

Publication Analysis

Top Keywords

enzyme activity
20
soil enzyme
12
potentiometric sensor
12
soil
9
on-site measurements
8
peroxidase activity
8
activity
7
potentiometric
5
enzyme
5
microdroplet-mediated enzyme
4

Similar Publications

Background: The emergence of OXA-type beta-lactamases has become a significant threat to public healthcare systems and may lead to prolonged hospital stays and increased mortality rates among affected patients. This study aimed to determine the prevalence of oxacillinase resistance (OXA) genes in multidrug-resistant (MDR) Gram-negative bacteria.

Methods: One hundred and six clinical isolates were collected from a stock of Gram-negative isolates and were identified and tested for antibiotic susceptibility and presence of OXA genes using polymerase chain reaction (PCR).

View Article and Find Full Text PDF

There is growing interest in the use of single cell proteins (SCPs) derived from methanotrophic bacteria for inclusion in aquafeed to reduce reliance on other, potentially less sustainable proteins. This two-part experiment aimed to investigate first (i) the dose effect of replacing soy protein concentrate with SCP in Australian hybrid abalone diets () and second, (ii) the potential for improved palatability of the SCP by using commercially produced liquid protein hydrolysate (PH). This was assessed in a 2 × 2 factorial experimental design.

View Article and Find Full Text PDF

Background: Selenium nanoparticles (SeNPs) show high therapeutic potential. SeNPs obtained by green synthesis methods, using commonly available plants, are an attractive alternative to nanoparticles obtained by classical, chemical methods. The green synthesis process uses environmentally friendly reagents, which offer an eco-friendly advantage.

View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHAs) are biobased and biodegradable polymers that offer a sustainable alternative to conventional plastics, addressing the escalating concerns over plastic pollution. While their environmental advantages are well-documented, the efficient degradation of PHAs in natural and engineered environments remains a critical component of their lifecycle. This review provides a comprehensive overview of PHA-degrading bacteria isolated from diverse ecosystems and highlights the pivotal role of PHA depolymerases in achieving PHA circularity.

View Article and Find Full Text PDF

Background: Atherosclerosis remains the leading cause of mortality worldwide, highlighting the urgent need for innovative treatments targeting chronic inflammation. Recent research indicates that quercetin (QCT) and curcumin, two naturally occurring compounds, have potential therapeutic benefits in cardiovascular diseases.

Objectives: This study focuses on the novel synthesis of nano-quercetin (N-QCT) encapsulated in solid lipid nanoparticles (SLNs) and investigates the synergistic cardioprotective effects of N-QCT and curcumin on human vascular smooth muscle cells (VSMCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!