Inflammation and metabolic dysfunction underly anhedonia-like behavior in antidepressant resistant male rats.

Brain Behav Immun

Functional Neuromodulation and Novel Therapeutics Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia; Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States; Department of Psychiatry and Behavioral Science, Emory University, Atlanta, GA, United States; Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States. Electronic address:

Published: March 2025

Inflammation and metabolic dysfunction impair dopamine neurotransmission, which is thought to serve as a critical mechanism underpinning motivational deficits such as anhedonia across a range of psychiatric and neurological disorders. This difficult-to-treat transdiagnostic symptom has important implications for treatment resistant depression (TRD), and may warrant more targeted therapeutic approaches that address the underlying pathophysiological mechanisms. Using the adrenocorticotrophic hormone (ACTH) model of antidepressant treatment resistance we characterized the relationship between antidepressant-like and anhedonia-like behavioral responses to bupropion, mesocortical tyrosine hydroxylase (TH) expression, chronic low-grade inflammation, and metabolic changes in male rats. We demonstrate that chronic ACTH elicited both an antidepressant resistant- and anhedonia-like phenotype in forced swim and effort-related choice behavioral tasks, respectively. This was associated with decreased TH expression in the brain, increased central and peripheral markers of inflammation, and peripheral metabolic disturbances, including impairment of immune cell insulin action. Multivariate analysis revealed that peripheral interleukin-6 (IL-6) levels, immune cell glucose uptake and disturbance of nucleotide metabolism were strongly associated with anhedonia-like behavior. Post-hoc analyses further confirmed strong correlations between TH expression, inflammation and behavioral performance. These data suggest that stress hormone-induced upregulation of inflammation concurrent with the impairment of insulin-mediated glucose uptake into immune cells is associated with disruption of nucleotide metabolism, and potential impaired central dopamine synthesis contributing to the behavioral expression of anhedonia. These results suggest that immunometabolic perturbations concomitant with impaired insulin action at the level of the immune cell result in a metabolically deficient state that directly impacts nucleotide precursors essential for dopamine synthesis and effortful behavior. These results highlight the potential for immune and metabolic markers for individualized treatment of refractory depression and anhedonia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2025.03.001DOI Listing

Publication Analysis

Top Keywords

inflammation metabolic
12
immune cell
12
metabolic dysfunction
8
anhedonia-like behavior
8
male rats
8
insulin action
8
glucose uptake
8
nucleotide metabolism
8
dopamine synthesis
8
inflammation
6

Similar Publications

The aim was to assess the correlation between periodontal status, whole salivary interleukin-1 beta (IL-1β) levels and oral yeasts carriage (OYC) among individuals with varying ranges of body mass index (BMI).  Material and method: The weight, waist circumference (WC), and height of individuals were assessed. Participants were categorized into three groups: Group-1 - normal weight (18.

View Article and Find Full Text PDF

Acute myocardial infarction, a leading cause of death globally, is often associated with cardiometabolic disorders such as atherosclerosis and metabolic syndrome. Metabolic treatment of these disorders can improve cardiac outcomes, as exemplified by the GLP-1 agonist semaglutide. Fibroblast growth factor 21 (FGF21), a novel metabolic regulator, plays pivotal roles in lipid mobilization and energy conversion, reducing lipotoxicity, inflammation, mitochondrial health, and subsequent tissue damage in organs such as the liver, pancreas, and heart.

View Article and Find Full Text PDF

Macrophage mitochondrial dysfunction, caused by oxidative stress, has been proposed as an essential event in the progression of chronic inflammation diseases, such as atherosclerosis. The cluster of differentiation-36 (CD36) and lectin-like oxLDL receptor-1 (LOX-1) scavenger receptors mediate macrophage uptake of oxidized low-density lipoprotein (oxLDL), which contributes to mitochondrial dysfunction by sustained production of mitochondrial reactive oxygen species (mtROS), as well as membrane depolarization. In the present study, the antioxidant mechanisms of action of the selective synthetic azapeptide CD36 ligand MPE-298 have been revealed.

View Article and Find Full Text PDF

A20/Tnfaip3, an early NF-κB response gene and key negative regulator of NF-κB signaling, suppresses proinflammatory responses. Its ubiquitinase and deubiquitinase activities mediate proteasomal degradation within the NF-κB pathway. This study investigated the involvement of A20 signaling alterations in podocytes in the development of kidney injury.

View Article and Find Full Text PDF

Tubulointerstitial hypoxia is a key factor for lupus nephritis progression to end-stage renal disease. Numerous aquaporins (AQPs) are expressed by renal tubules and are essential for their proper functioning. The aim of this study is to characterize the tubular expression of AQP1, AQP2 and AQP3, which could provide a better understanding of tubulointerstitial stress during lupus nephritis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!