Dynamic Coupling and Entropy Changes in KRAS G12D Mutation: Insights into Molecular Flexibility, Allostery and Function.

J Mol Biol

Department of Chemical and Biological Engineering, Koc University Rumelifeneri Yolu, Sariyer 34450, Istanbul Turkey. Electronic address:

Published: March 2025

The oncogenic G12D mutation in KRAS is a major driver of cancer progression, yet the complete mechanism by which this mutation alters protein dynamics and function remains incompletely understood. Here, we investigate how the G12D mutation alters KRAS's conformational landscape and residue-residue interactions using molecular dynamics simulations coupled with entropy calculations and mutual information (MI) analysis. We demonstrate that the mutation increases local entropy at key functional residues (D12, Y32, G60, and Q61), and introduces new peaks to the Ramachandran angles, disrupting the precise structural alignment necessary for GTP hydrolysis. Notably, while individual residue entropy increases, joint entropy analysis shows a complex reorganization pattern. MI analysis identifies enhanced dynamic coupling between distant residues, suggesting that the mutation establishes new long-range interactions that stabilize the active state. These findings show how G12D mutation redefines KRAS's dynamic network, leading to persistent activation through enhanced residue coupling rather than mere local disruption. Our results suggest novel therapeutic strategies focused on modulating protein dynamics rather than targeting specific binding sites, potentially offering new approaches to combat KRAS-driven cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2025.169075DOI Listing

Publication Analysis

Top Keywords

g12d mutation
16
dynamic coupling
8
mutation alters
8
protein dynamics
8
mutation
7
entropy
5
coupling entropy
4
entropy changes
4
changes kras
4
g12d
4

Similar Publications

Most human pancreatic ductal adenocarcinoma (PDAC) are not infiltrated with cytotoxic T cells and are highly resistant to immunotherapy. Over 90% of PDAC have oncogenic KRAS mutations, and phosphoinositide 3-kinases (PI3Ks) are direct effectors of KRAS. Our previous study demonstrated that ablation of in KPC (; ; ) pancreatic cancer cells induced host T cells to infiltrate and completely eliminate the tumors in a syngeneic orthotopic implantation mouse model.

View Article and Find Full Text PDF

(rat sarcoma) is one of the most frequently mutated gene families in cancer, encoding proteins classified as small GTPases. Mutations in RAS proteins result in abnormal activation of the RAS signaling pathway, a key driver in the initiation and progression of various malignancies. Consequently, targeting RAS proteins and the RAS signaling pathway has become a critical strategy in anticancer therapy.

View Article and Find Full Text PDF

Dynamic Coupling and Entropy Changes in KRAS G12D Mutation: Insights into Molecular Flexibility, Allostery and Function.

J Mol Biol

March 2025

Department of Chemical and Biological Engineering, Koc University Rumelifeneri Yolu, Sariyer 34450, Istanbul Turkey. Electronic address:

The oncogenic G12D mutation in KRAS is a major driver of cancer progression, yet the complete mechanism by which this mutation alters protein dynamics and function remains incompletely understood. Here, we investigate how the G12D mutation alters KRAS's conformational landscape and residue-residue interactions using molecular dynamics simulations coupled with entropy calculations and mutual information (MI) analysis. We demonstrate that the mutation increases local entropy at key functional residues (D12, Y32, G60, and Q61), and introduces new peaks to the Ramachandran angles, disrupting the precise structural alignment necessary for GTP hydrolysis.

View Article and Find Full Text PDF

Bone marrow sympathetic neuropathy is a hallmark of hematopoietic malignancies and it involves severe ultrastructural damage.

Exp Hematol Oncol

March 2025

Stem Cells, Ageing and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, MH2 Building Level 10, 9019, Tromsø, Norway.

The hematopoietic stem cell (HSC) niche in the bone marrow (BM) supports HSC function, fate and numbers [1]. Sympathetic fibres innervate the BM and are components of the hematopoietic stem and progenitor cell (HSPC) niche [2]. Neuropathy of the HSPC niche is present and essential for disease development in experimental models of JAK2 myeloproliferative neoplasms (MPN) and MLL-AF9 acute myeloid leukemia (AML), and it is present in the BM of human MPN and AML patients [3-6].

View Article and Find Full Text PDF

We demonstrate reprogramming of the tolerogenic immune environment in the liver for mounting an effective immune response against often-fatal pancreatic cancer metastases. This was achieved by engineering a lipid nanoparticle (LNP) to deliver mRNA encoding the KRAS G12D neoantigenic epitope along with cGAMP, a dinucleotide agonist of the stimulator of the interferon genes (STING) pathway, capable of activating a type I interferon response. cGAMP/mKRAS/LNP were synthesized by a microfluidics approach involving nanoprecipitation of mRNA and cGAMP by an ionizable lipid, MC3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!