Stroke remains a leading cause of global mortality, with neuroinflammation significantly exacerbating clinical outcomes. Microglia serve as key mediators of post-stroke neuroinflammation, though the mechanisms driving their migration to injury sites remain poorly understood. In this study, using publicly available single-cell sequencing data (GSE234052), we identified a migration-associated microglial subtype in a murine model of distal middle cerebral artery occlusion (dMCAO). Additionally, ribosome-bound mRNA sequencing data (GSE225110) from microglia isolated from peri-infarct cortical tissue uncovered dMCAO-induced alterations in microglial mRNA translation. By integrating these datasets, we identified A Disintegrin And Metalloproteinase 8 (Adam8) as a key gene upregulated at both the transcriptional and translational levels post-dMCAO. Protein analysis revealed that both the precursor and active forms of Adam8 were predominantly expressed in microglia and significantly upregulated in peri-infarct regions following dMCAO. Notably, Adam8 inhibition with BK-1361 significantly reduced Adam8 cleavage, M1 microglial migration, inflammation, infarct size, and improved neurological outcomes. Bioinformatics analysis further identified Myo1e as a potential interacting partner of Adam8, a finding validated through immunofluorescence co-localization. These findings highlight Adam8 as a promising therapeutic target for mitigating post-stroke neuroinflammation and offer new insights into the mechanisms of microglial migration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.expneurol.2025.115207 | DOI Listing |
Exp Neurol
March 2025
Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China. Electronic address:
Stroke remains a leading cause of global mortality, with neuroinflammation significantly exacerbating clinical outcomes. Microglia serve as key mediators of post-stroke neuroinflammation, though the mechanisms driving their migration to injury sites remain poorly understood. In this study, using publicly available single-cell sequencing data (GSE234052), we identified a migration-associated microglial subtype in a murine model of distal middle cerebral artery occlusion (dMCAO).
View Article and Find Full Text PDFJ Mol Biol
February 2025
Centre International de Recherche en Infectiologie (CIRI), Lyon 69007, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, Lyon 69007, France; Ecole Normale Supérieure de Lyon, Lyon 69007, France; Université Claude Bernard Lyon 1 (UCBL1), Lyon 69007, France; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), Lyon 69007, France. Electronic address:
Selenocysteine (Sec), the 21st proteogenic amino acid, is a key component of selenoproteins, where it performs critical roles in redox reactions. Sec incorporation during translation is unique and highly sensitive to selenium levels. Encoded by the UGA codon, typically a termination signal, its insertion necessitates the presence of a selenocysteine insertion sequence (SECIS) within the 3' untranslated region (UTR) of selenoprotein mRNAs.
View Article and Find Full Text PDFNeuron
January 2025
Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:
Gliomas are aggressive neoplasms that diffusely infiltrate the brain and cause neurological symptoms, including cognitive deficits and seizures. Increased mTOR signaling has been implicated in glioma-induced neuronal hyperexcitability, but the molecular and functional consequences have not been identified. Here, we show three types of changes in tumor-associated neurons: (1) downregulation of transcripts encoding excitatory and inhibitory postsynaptic proteins and dendritic spine development and upregulation of cytoskeletal transcripts via neuron-specific profiling of ribosome-bound mRNA, (2) marked decreases in dendritic spine density via light and electron microscopy, and (3) progressive functional alterations leading to neuronal hyperexcitability via in vivo calcium imaging.
View Article and Find Full Text PDFNature
November 2024
Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
Nat Struct Mol Biol
December 2024
Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!