Cholangiocarcinoma is characterized by its high malignancy, frequent recurrence and insensitivity to conventional radiotherapy and chemotherapy. This resistance may be associated with the presence of cells in the G0/G1 arrest phase within the cancer. Cancer cells in the G0/G1 phase are resistant to therapies targeting actively dividing cells, allowing them to evade conventional adjuvant treatments and survive. When conditions become favorable, these quiescent cells can re-enter the cell cycle, proliferate and potentially contribute to cancer recurrence. However, the biomarkers for identifying cells in the G0/G1 arrest phase within cholangiocarcinoma and the molecular mechanisms inducing G0/G1 arrest remain unclear. In our study, we first identified APOC1 as a characteristic gene for G0/G1 phase arrest in cholangiocarcinoma through bulk RNA sequencing (bulkRNA-seq). We then used single-cell RNA sequencing(scRNA-seq) for cell cycle inference and localized the expression peaks of APOC1 to verify its active cell cycle phase. Our experiments demonstrated that APOC1 can induce G0/G1 phase arrest in cholangiocarcinoma cells by inhibiting the Wnt/β-catenin signaling pathway, thereby suppressing cell proliferation, migration and invasion. This suggests that APOC1 may serve as a key regulatory factor and an important biomarker for cells in the G0/G1 phase of cholangiocarcinoma.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2025.111028DOI Listing

Publication Analysis

Top Keywords

cell cycle
16
cells g0/g1
16
g0/g1 phase
16
arrest cholangiocarcinoma
12
g0/g1 arrest
12
bulk rna
8
rna sequencing
8
g0/g1
8
arrest phase
8
phase cholangiocarcinoma
8

Similar Publications

Positive surgical margins following radical prostatectomy significantly contribute to tumor recurrence. While systemic chemotherapy demonstrates limited efficacy in this context, local chemotherapy drug delivery systems based on nanomaterials offer promising strategies to address this issue by modifying drug release kinetics and distribution, thereby enhancing antitumor effects while minimizing the toxicities associated with systemic chemotherapy. In this study, we utilized electrospun nanofibrous mats loaded with docetaxel for sustained drug delivery.

View Article and Find Full Text PDF

Adhesion-Assisted Antioxidant-Engineered Mesenchymal Stromal Cells for Enhanced Cardiac Repair in Myocardial Infarction.

ACS Nano

March 2025

School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.

Mesenchymal stromal cell (MSC) therapy holds great promise for treating myocardial infarction (MI). However, the inflammatory and reactive oxygen species (ROS)-rich environment in infarcted myocardium challenges MSC survival, limiting its therapeutic impact. In this study, we demonstrate that chemical modification of MSCs with anti-VCAM1 and polydopamine (PD) significantly enhances MSC survival and promotes cardiac repair.

View Article and Find Full Text PDF

The life cycle of effector T cells is determined by signals downstream of the T cell receptor (TCR) that induce activation and proinflammatory activity, or death as part of the process to resolve inflammation. We recently reported that T cell myeloid differentiation primary response 88 (MyD88) tunes down TCR activation and limits T cell survival in the cardiac and tumor inflammatory environments, in contrast to its proinflammatory role in myeloid cells upon toll-like receptor (TLR) recognition of pathogen- and damage-associated molecular patterns. However, the molecular mechanism remains unknown.

View Article and Find Full Text PDF

Lung cancer exhibits altered metabolism, influencing its response to radiation. To investigate the metabolic regulation of radiation response, we conducted a comprehensive, metabolic-wide CRISPR-Cas9 loss-of-function screen using radiation as selection pressure in human non-small cell lung cancer. Lipoylation emerged as a key metabolic target for radiosensitization, with lipoyltransferase 1 (LIPT1) identified as a top hit.

View Article and Find Full Text PDF

Expression quantitative trait loci (eQTLs) provide a key bridge between noncoding DNA sequence variants and organismal traits. The effects of eQTLs can differ among tissues, cell types, and cellular states, but these differences are obscured by gene expression measurements in bulk populations. We developed a one-pot approach to map eQTLs in by single-cell RNA sequencing (scRNA-seq) and applied it to over 100,000 single cells from three crosses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!