Exploring the mechanisms of cow placental peptides in delaying liver aging based on mitochondrial energy metabolism.

J Ethnopharmacol

The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical research center for cow disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:

Published: March 2025

Ethnopharmacological Relevance: Placenta is a kind of traditional Chinese medicine, known as "Ziheche". The role of cow placental peptides (CPP) in delaying liver aging has been reported, and in-depth exploration of the specific regulatory mechanisms is of great significance for the recycling and utilization of CPP and the development of natural anti-aging drugs.

Aim Of The Study: To investigate the protective effects and mechanisms of CPP on liver aging induced by D-galactose (D-gal) in mice from the perspective of mitochondrial energy metabolism.

Methods: An aging model was induced in mice using D-gal. The body weight and liver index of mice were measured, followed by staining and electron microscopy to observe liver morphology and aging markers. Reactive oxygen species (ROS) levels and antioxidant-related indicators were assessed, and mitochondrial function was evaluated. Finally, changes and mechanisms in liver transcriptomics and targeted mitochondrial energy metabolomics were analyzed and integrated to elucidate the regulatory pathways through which CPP delays liver aging.

Results: CPP improved liver structural damage, oxidative stress, and mitochondrial dysfunction induced by D-galactose in aging mice. It increased the final body weight and liver index, alleviated hepatocyte swelling and degeneration, enhanced liver antioxidant capacity, and restored normal mitochondrial morphology and function. The combined analysis of targeted mitochondrial energy metabolomics and liver transcriptomics revealed that CPP directly or indirectly regulated mitochondrial energy metabolism and delayed aging by influencing the cAMP signaling pathway, PI3K-Akt signaling pathway, oxidative phosphorylation, and other pathways, thereby modulating related genes and metabolites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2025.119593DOI Listing

Publication Analysis

Top Keywords

mitochondrial energy
20
liver aging
12
liver
11
cow placental
8
placental peptides
8
delaying liver
8
mitochondrial
8
energy metabolism
8
induced d-galactose
8
body weight
8

Similar Publications

The Glutamate/GABA-Glutamine Cycle: Insights, Updates, and Advances.

J Neurochem

March 2025

Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Synaptic homeostasis of the principal neurotransmitters glutamate and GABA is tightly regulated by an intricate metabolic coupling between neurons and astrocytes known as the glutamate/GABA-glutamine cycle. In this cycle, astrocytes take up glutamate and GABA from the synapse and convert these neurotransmitters into glutamine. Astrocytic glutamine is subsequently transferred to neurons, serving as the principal precursor for neuronal glutamate and GABA synthesis.

View Article and Find Full Text PDF

Background: The essential trace element iron, which can occur in various oxidation states, is required for many biochemical reactions and processes in the human body.

Methods: This review summarizes the current knowledge about the physiology of iron metabolism.

Results: The physiological functions comprise oxygen transport in the blood, electron transport processes, DNA synthesis and gene regulation, the regulation of cell growth and differentiation, and the energy production in mitochondria.

View Article and Find Full Text PDF
Article Synopsis
  • Asthma is a chronic respiratory disease involving inflammation and other respiratory issues, with mitochondria playing a crucial role in its underlying mechanisms.
  • A bibliometric analysis of research from 2004 to mid-2024 identified 669 publications, showing significant growth in studies since 2015, primarily from the US, China, and the UK.
  • Key themes include mitochondrial dysfunction and oxidative stress, with emerging research focusing on mitochondrial biogenesis and the NLRP3 inflammasome, suggesting opportunities for new therapeutic strategies targeting mitochondria in asthma treatment.
View Article and Find Full Text PDF

Introduction: Multi-drug resistance (MDR) is one of the leading reasons that cause the failures of cancer treatment. Novel agents that may reverse MDR and neutralize drug-resistant cancer cells are highly desirable for clinical practice. The targeting of cellular redox homeostasis and/or mitochondria-mediated energy metabolism are promising strategies for the suppression of drug-resistant cancer cells.

View Article and Find Full Text PDF

Mitochondrial genetics, signalling and stress responses.

Nat Cell Biol

March 2025

Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Mitochondria are multifaceted organelles with crucial roles in energy generation, cellular signalling and a range of synthesis pathways. The study of mitochondrial biology is complicated by its own small genome, which is matrilineally inherited and not subject to recombination, and present in multiple, possibly different, copies. Recent methodological developments have enabled the analysis of mitochondrial DNA (mtDNA) in large-scale cohorts and highlight the far-reaching impact of mitochondrial genetic variation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!