The simultaneous hydrolysis of cellulose and hemicellulose involves trade-offs, making precise control of hydrolysis products crucial for sustainable development. This study employed three machine learning (ML) models-Random Forest (RF), Extreme Gradient Boosting (XGB), and Support Vector Machines (SVM)-to simulate and predict the yields of xylose (Xyl), furfural (FF), glucose (Glu), 5-hydroxymethylfurfural (5-HMF), and levulinic acid (LA) in a phosphoric acid/acetone/water system. The RF model demonstrated the highest accuracy, with R values between 0.782 and 0.887, and RMSE from 1.740 to 3.370. Key factors affecting the targeted conversion of macromolecules were identified as the solid-liquid ratio, reaction temperature, and acid dosage, with 160 °C recognized as a critical threshold for converting sugars derived from cellulose and hemicellulose into aldehydes and acids. The presence of metal chlorides, particularly AlCl, significantly enhanced the selectivity of reactions and affected the distribution of products. It was found that corncobs are more efficient than bagasse in producing Glu. This study supports precise control over a multivariate system for producing multiple hydrolysis products from hemicellulose and cellulose, paving the way for data-driven optimization of lignocellulosic biomass conversion to high-value chemicals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.141912 | DOI Listing |
Int J Biol Macromol
March 2025
Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, College of Materials Science and Technology, Beijing 100083, China. Electronic address:
The simultaneous hydrolysis of cellulose and hemicellulose involves trade-offs, making precise control of hydrolysis products crucial for sustainable development. This study employed three machine learning (ML) models-Random Forest (RF), Extreme Gradient Boosting (XGB), and Support Vector Machines (SVM)-to simulate and predict the yields of xylose (Xyl), furfural (FF), glucose (Glu), 5-hydroxymethylfurfural (5-HMF), and levulinic acid (LA) in a phosphoric acid/acetone/water system. The RF model demonstrated the highest accuracy, with R values between 0.
View Article and Find Full Text PDFAdv Sci (Weinh)
March 2025
Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, FI-00076, Finland.
The agrochemical run-off associated with crop control is an unintended consequence of droplet rebound from plant foliage, which negatively affects crop performance and the environment. This is most critical in water-based formulations delivered on plant surfaces that are typically waxy and nonwetting. This study introduces an alternative to synthetic surfactants and high molecular weight polymers that are used as spreading agents for agrochemicals.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
Ionic liquids (ILs) are highly effective in lignocellulose pretreatment due to their excellent solvation properties. However, the single-phase nature of conventional IL pretreatment not only causes component mixing, complicating separation and utilization, but also limits large-scale application due to the high cost. To address these challenges, this study developed a biphasic pretreatment system combining the protic IL [BHEM]mesy with aqueous pentanol, aiming to efficiently fractionate corn stover under mild conditions.
View Article and Find Full Text PDFTree Physiol
March 2025
Department of Biology, Syracuse University, Syracuse, NY, United States.
Efficient production and processing of poplar biomass feedstock requires costly pretreatments and enzyme additives. Transgenic alterations of poplar can reduce the need for these inputs by increasing biomass, improving lignocellulose quality, and enhancing nutrient uptake. Previously, a transgenic line of poplar expressing a bacterial hyperthermophilic endoglucanase (TnCelB) in hybrid poplar (P39, Populus alba × grandidentata) was developed and characterized.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China. Electronic address:
With the advancement of technology, the production of domestic sewage and industrial wastewater containing dyes are increasing steadily. In the evolutionary process of catalytic reduction wastewater, recyclability and homogenization are still puzzles. Herein, a wood-derived cellulose catalytic system with hierarchical pore structure was proposed based on chlorite-alkali method for efficient catalytic reduction on 4-nitrophenol (4-NP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!