Rhodiola, the dried rhizome of various plants of the family Crassulaceae and genus Rhodiola, has been used as a traditional Tibetan medicine for thousands of years, with high medicinal and healthcare value. Polysaccharides, the major active components of Rhodiola, have attracted widespread attention due to their abundant biological activities and medicinal value. Rhodiola polysaccharides (RPs) have various biological activities such as germ cell protection, antioxidant, immunomodulatory, anti-fatigue, hypoglycemic, anti-tumor, and hematopoietic functions. The biological activities of RPs are closely related to their structures and different extraction and purification methods produce different polysaccharide structures. This review aims to provide a comprehensive overview of the research progress in the extraction, purification, structural characterization, bioactivity, potential mechanisms, and structural modification of RPs as well as their potential development prospects and future promising research directions, to lay a foundation for the further development of RP pharmaceutical products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.141873DOI Listing

Publication Analysis

Top Keywords

biological activities
12
structural characterization
8
extraction purification
8
rhodiola
5
preparation structural
4
characterization bioactivities
4
bioactivities polysaccharides
4
polysaccharides rhodiola
4
rhodiola review
4
review rhodiola
4

Similar Publications

Peroxiredoxins (Prx) are ubiquitous Cys peroxidases regulated by sulfinylation, a modification that occurs when the sulfenic acid generated on the catalytic Cys by peroxide reduction reacts with a second molecule of peroxide. In the Prx1 family, sulfinylation sensitivity is controlled by competition between a structural transition from a fully folded (FF) to locally unfolded (LU) conformation and the chemical step of sulfinylation. The initial peroxide reduction relies on a conserved catalytic hydroxylated residue that allows peroxide optimal activation.

View Article and Find Full Text PDF

A NAC transcription factor and a MADS-box protein antagonistically regulate sucrose accumulation in strawberry receptacles.

Plant Physiol

March 2025

Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.

Sugar accumulation during fruit ripening is an essential physiological change that influences fruit quality. While NAC transcription factors are recognized for their role in modulating strawberry (Fragaria × ananassa) fruit ripening, their specific contributions to sugar accumulation have remained largely unexplored. This study identified FvNAC073, a NAC transcription factor, as a key regulator that not only exhibits a gradual increase in gene expression during fruit ripening but also enhances the accumulation of sucrose.

View Article and Find Full Text PDF

Synergistic Effects of a Novel Multifunctional Bionic Scaffold and Electrical Stimulation Promote Bone Tissue Regeneration.

Biotechnol Bioeng

March 2025

Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, China.

Electrical stimulation (ES) can effectively regulate cell behavior and promote bone tissue regeneration, and conductive biomaterials can further enhance this effect by enhancing the conduction of electrical signals between cells. In this study, poly(lactic-co-glycolic acid) (PLGA) and poly(l-lactide)-aniline pentamer triblock copolymer (PAP) were used as raw materials to prepare a conductive bionic scaffold (PLGA/PAP). Subsequently, bone morphogenetic protein 2 mimetic peptide containing a DOPA tag (DBMP2MP) was loaded on the scaffold surface.

View Article and Find Full Text PDF

Lyophilized monkeypox mRNA lipid nanoparticle vaccines with long-term stability and robust immune responses in mice.

Hum Vaccin Immunother

December 2025

Department of Research & Development, Yither Biotech Co Ltd, Shanghai, China.

The World Health Organization (WHO) has recently declared another global health emergency due to the rapidly spreading monkeypox (Mpox) outbreak in numerous African countries. To address the unmet need to contain the outbreak using the existing vaccines, this study developed a lyophilization process for an effective, scalable and affordable Mpox mRNA-LNP vaccine candidate to address the global health crisis. A comprehensive evaluation and optimization of the vaccine formulation (the type/concentration of cryoprotectants, the type/concentration of buffer system, as well as the mRNA concentration and reconstitution solvent) and the freeze-drying process parameters (freezing method, temperature, cooling rate and primary/secondary drying conditions) were conducted.

View Article and Find Full Text PDF

Self-recoverable broadband near infrared mechanoluminescence from BaGaO:Cr using a multi-site occupation strategy.

Mater Horiz

March 2025

School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.

Near infrared mechanoluminescence (NIR-ML) materials have attracted the attention of researchers due to their unique advantages, such as high resistance to bright-field interference and higher penetration depth into biological tissues. However, the reported NIR-ML materials are mainly rare-ion-activated narrow-band emitters. In this work, we report a NIR-ML material of BaGaO:Cr by a solid state reaction method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!