Magnetic resonance imaging (MRI) as a critical clinical tool in medical imaging, requires a long scan time for producing high-quality MRI images. To accelerate the speed of MRI while reconstructing high-quality images with sharper edges and fewer aliases, a novel dual-domain generator and edge-enhancement dual discriminator generative adversarial network structure named DGEDDGAN for MRI reconstruction is proposed, in which one discriminator is responsible for holistic image reconstruction, whereas the other is adopted to enhance the edge preservation. A dual-domain U-Net structure that cascades the frequency domain and image domain is designed for the generator. The densely connected residual block is used to replace the traditional U-Net convolution block to improve the feature reuse capability while overcoming the gradient vanishing problem. The coordinate attention mechanism in each skip connection is employed to effectively reduce the loss of spatial information and enforce the feature selection capability. Extensive experiments on two publicly available datasets i.e., IXI dataset and CC-359, demonstrate that the proposed method can reconstruct the high-quality MRI images with more edge details and fewer artifacts, outperforming several state-of-the-art methods under various sampling rates and masks. The time of single-image reconstruction is below 13 ms, which meets the demand of faster processing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mri.2025.110381 | DOI Listing |
Magn Reson Imaging
March 2025
School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
Magnetic resonance imaging (MRI) as a critical clinical tool in medical imaging, requires a long scan time for producing high-quality MRI images. To accelerate the speed of MRI while reconstructing high-quality images with sharper edges and fewer aliases, a novel dual-domain generator and edge-enhancement dual discriminator generative adversarial network structure named DGEDDGAN for MRI reconstruction is proposed, in which one discriminator is responsible for holistic image reconstruction, whereas the other is adopted to enhance the edge preservation. A dual-domain U-Net structure that cascades the frequency domain and image domain is designed for the generator.
View Article and Find Full Text PDFSci Rep
March 2025
School of Computer Science and Artificial Intelligence, Zhengzhou University, Zhengzhou, 450001, China.
As an image enhancement technology, multi-modal image fusion primarily aims to retain salient information from multi-source image pairs in a single image, generating imaging information that contains complementary features and can facilitate downstream visual tasks. However, dual-stream methods with convolutional neural networks (CNNs) as backbone networks predominantly have limited receptive fields, whereas methods with Transformers are time-consuming, and both lack the exploration of cross-domain information. This study proposes an innovative image fusion model designed for multi-modal images, encompassing pairs of infrared and visible images and multi-source medical images.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
February 2025
School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
Objectives: We propose a sparse-view cone-beam CT reconstruction algorithm based on bidirectional flow field guided projection completion (BBC-Recon) to solve the ill-posed inverse problem in sparse-view cone-beam CT imaging.
Methods: The BBC-Recon method consists of two main modules: the projection completion module and the image restoration module. Based on flow field estimation, the projection completion module, through the designed bidirectional and multi-scale correlators, fully calculates the correlation information and redundant information among projections to precisely guide the generation of bidirectional flow fields and missing frames, thus achieving high-precision completion of missing projections and obtaining pseudo complete projections.
IEEE Trans Med Imaging
February 2025
In Computed Tomography (CT) imaging, the ring artifacts caused by the inconsistent detector response can significantly degrade the reconstructed images, having negative impacts on the subsequent applications. The new generation of CT systems based on photon-counting detectors are affected by ring artifacts more severely. The flexibility and variety of detector responses make it difficult to build a well-defined model to characterize the ring artifacts.
View Article and Find Full Text PDFMulti-parametric magnetic resonance imaging (MRI) can provide complementary quantitative information by generating multi-parametric maps and is becoming a promising imaging technique for advanced medical diagnosis. However, multi-parametric MRI requires longer acquisition time than normal MRI scanning. The existing reconstruction methods for accelerated multi-parametric MRI suffer from suboptimal performance due to stagewise optimization, and inefficient utilization of intra- and inter-contrast information.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!