Structure and dynamics of phytantriol-glycerol mesophases: Insights into the reverse micelle to lamellar phase transition.

J Phys Condens Matter

Department of Chemistry, University of Basel, Gebäude 1096 / Mattenstrasse 22, Basel, 4058, SWITZERLAND.

Published: March 2025

Lipidic mesophases (LMPs) are lyotropic liquid crystals formed by the self-assembly of lipid in water, offering diverse phase symmetries with unique physicochemical properties. However, a fundamental understanding of how the dynamics relate to the composition and structure remains limited. In this study, we substitute water with glycerol, which closely resembles the headgroup structure of phytantriol, as the solvent to explore phytantriol-based LMPs in a pure glycerol environment. The non-crystallizing nature of both phytantriol and glycerol enables phase studies at sub-zero temperatures. Combined small-angle x-ray scattering and differential scanning calorimetry analyses confirm the formation of reverse micelles (L2), which undergo a phase transition to lamellar phase (Lα) upon cooling. Broadband dielectric spectroscopy (BDS) reveals how the dynamics of phytantriol are governed by the composition and symmetry of the LMP: Increased glycerol content decreases the relaxation time of the Debye- and α‍-‍relaxation, therefore exerting a plasticizing effect. The change in long-range order of phytantriol during the L2 - Lα phase transition reveals a decrease of the conductivity relaxation time. The introduction of a net orientation of phytantriol further reveals a new relaxation process-the dipole-matrix interaction-exclusive to the Lα phase. Our results highlight the value of combining BDS with structural and thermal analyses for a deeper understanding of the dynamics in soft matter systems. .

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/adbeaeDOI Listing

Publication Analysis

Top Keywords

phase transition
12
lamellar phase
8
understanding dynamics
8
relaxation time
8
phase
7
phytantriol
5
structure dynamics
4
dynamics phytantriol-glycerol
4
phytantriol-glycerol mesophases
4
mesophases insights
4

Similar Publications

Pressure-Induced Phase Transitions in Bismutotantalite (BiTaO): Insights from Single-Crystal Diffraction and Raman Spectroscopy.

Inorg Chem

March 2025

Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, China.

In situ high-pressure single-crystal X-ray diffraction and Raman spectroscopy analyses were performed on a natural bismutotantalite with an α-BiTaO structure. The results indicate that α-BiTaO transforms into an orthorhombic phase (HP γ-BiTaO), likely through an intermediate orthorhombic phase (HP β-BiTaO). The transition pressures are 11.

View Article and Find Full Text PDF

P2-type NaNiMnO (NNMO) as cathode material for sodium-ion batteries (SIBs) largely suffers from continuous accumulation of local stress caused by destructive structural evolution and irreversible oxygen loss upon cycling, leading to rapid capacity degradation. Herein, a strategy of negative enthalpy doping (NED), wherein transition metal (TM) sites are substituted with 0.01 mol each Sn, Sb, Cu, Ti, Mg, and Zn to increase the stability of the TM layers, is proposed.

View Article and Find Full Text PDF

The delicate construction of electrocatalysts with high catalytic activity is a strategic method to enhance the kinetics of lithium-sulfur batteries (LSBs). Adjusting the local structure of the catalyst is always crucial for understanding the structure-activity relationship between atomic structure and catalyst performance. Here, in situ induction of electron-deficient B enables phase engineering MoC, realizing the transition from hexagonal (h-MoC) to cubic phase (c-B-MoC).

View Article and Find Full Text PDF

The second and third most frequently diagnosed cancers worldwide are breast (2.3 million new cases) and colorectal (1.9 million new cases), respectively.

View Article and Find Full Text PDF

Carbon is nothing less than a rock star in the world of research on allotropes which has a tremendous ability to form several simple and complex allotropic structures of various sp, sp and sp hybridizations, thanks to its flexible chemical structure. By high-pressure experimental and theoretical approaches, new carbon forms were synthesized from known carbon structures. Herein, we report the phase transition from amorphous carbon nanoparticles to a novel thermodynamically stable carbon allotropic structure, denominated as SD carbon (Sivakumar-Dai carbon), obtained through the impact of acoustic shock waves with a transient pressure of 16.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!