Electric field-assisted synthesis of molecularly imprinted microelectrode for specific extraction of triazoles before quantification with HPLC.

J Chromatogr A

Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, P. O. Box 1009, Xiamen 361005, China. Electronic address:

Published: March 2025

Selective isolation and extraction is significant in the accurate monitoring of triazoles residuals in complex samples. In this connection, electric field reinforced solid-phase microextraction (ER-SPME) based on molecularly imprinted microelectrode (MIM) was developed for the specific capture of triazoles in environmental water and fruit juice samples prior to HPLC quantification. Using triadimenol (TRN) and acrylic acid as template and functional monomer, respectively, in-situ polymerization technique under the assistance of electric field was employed to conveniently prepare MIM. Results uncovered that the application of electric field during the polymerization procedure favored the improvement of specific recognition performance of MIM. In addition, the exertion of electric field at adsorption and desorption steps reinforced the extraction performance and shortened extraction duration. Chemical interactions played the key role in the adsorption and the extraction process belonged to single-layer adsorption. Selective adsorption behaviors and specific capture mechanism under electric field of MIM@ER-SPME towards TRN and its structural analogues were investigated in detail. After optimization of MIM@ER-SPME parameters, sensitive and reliable method for the monitoring of triazoles residuals in water and fruit juice samples was established. The achieved limits of detection (LODs) for water and juice samples were 0.011-0.022 μg/L and 0.014-0.097 μg/L, respectively. In comparison with documentary techniques, the established method exhibited satisfactory anti-interference performance, low LODs, high cost-effectiveness, superior reproducibility and low consumption of organic solvent in selective capture and determination of trace triazoles in actual samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2025.465860DOI Listing

Publication Analysis

Top Keywords

electric field
20
juice samples
12
molecularly imprinted
8
imprinted microelectrode
8
monitoring triazoles
8
triazoles residuals
8
specific capture
8
water fruit
8
fruit juice
8
electric
6

Similar Publications

MoSe/BiSe Heterostructure Immobilized in N-Doped Carbon Nanosheets Assembled Flower-Like Microspheres for High-Rate Sodium Storage.

Small

March 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

A key challenge for sodium-ion batteries (SIBs) lies in identifying suitable host materials capable of accommodating large Na ions while addressing sluggish chemical kinetics. The unique interfacial effects of heterogeneous structures have emerged as a critical factor in accelerating charge transfer and enhancing reaction kinetics. Herein, MoSe/BiSe composites integrated with N-doped carbon nanosheets are synthesized, which spontaneously self-assemble into flower-like microspheres (MoSe/BiSe@N-C).

View Article and Find Full Text PDF

Enhanced Tumor Ablation and Immune Activation Via Irreversible Electroporation and Functionalized Vermiculite Nanosheets.

Small

March 2025

State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China.

Irreversible electroporation (IRE) is a minimally invasive, non-thermal tumor ablation technique that induces nanoscale membrane perforation, leading to immunogenic cell death (ICD). However, IRE alone is limited by uneven electric field attenuation, incomplete tumor ablation, and the immunosuppressive nature of the tumor microenvironment. To address these challenges, a multifunctional nanomaterial, vermiculite nanosheets/calcium peroxide nanosheets (VMT/CaO NSs), is developed to enhance the efficacy of IRE.

View Article and Find Full Text PDF

Tuning higher order structure in colloidal fluids.

Soft Matter

March 2025

Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France.

Colloidal particles self assemble into a wide range of structures under external AC electric fields due to induced dipolar interactions [Yethiraj and Van Blaaderen, , 2003, , 513]. As a result of these dipolar interactions, at low volume fraction the system is modulated between a hard-sphere like state (in the case of zero applied field) and a "string fluid" upon application of the field. Using both particle-resolved experiments and computer simulations, we investigate the emergence of the string fluid with a variety of structural measures including two-body and higher-order correlations.

View Article and Find Full Text PDF

Carbon-based microwave absorption materials have garnered widespread attention as lightweight and efficient wave absorbers, emerging as a prominent focus in the field of functional materials research. In this work, FeNi nanoparticles, synthesized in situ within graphite interlayers, were employed as catalysts to grow carbon nanofibers in situ via intercalation chemical vapor deposition (CVD). We discovered that amorphous carbon nanofibers (CNFs) can exfoliate and separate highly conductive graphite nanosheets (GNS) from the interlayers.

View Article and Find Full Text PDF

Photodegradation of antibiotics based on photocatalytic semiconductors is a promising option to alleviate water pollution. Despite its limitations, TiO-based photocatalysts are still the most widely studied materials for pollutant degradation. In this work, a pomegranate-like g-CN/C/TiO nano-heterojunction was constructed using the hydrothermal-calcination method, consisting of interconnected small crystals with a dense structure and closely contacted interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!