Polyphosphonates (PPs) are increasingly used in detergents and as antiscalants in Europe, with an estimated 18,600 tons annually entering surface waters. Aminopolyphosphonates (APPs) can be readily transformed by environmental processes, contrary to previous beliefs about PP stability during wastewater treatment. Together with the identification of glyphosate as a minor transformation product (TP) of the widely used diethylenetriamine penta(methylenephosphonate) (DTPMP), this necessitates further detailed APP transformation studies. A novel speciation analysis method for phosphonates and several potential phosphorus-containing TPs was developed using a rapid ion chromatographic (IC) separation and element-specific detection by inductively coupled plasma-triple quadrupole-mass spectrometry (ICP-TQ-MS). Chromatographic separation was optimised with a five-step gradient, allowing the simultaneous analysis of a wide range of analytes with varying sizes and numbers of negative charges within a single chromatographic run. Nine phosphorus species including APPs, PPs, glyphosate, aminomethylphosphonic acid (AMPA) and phosphate can be analysed within a run time of 205 seconds. Excellent species-specific detection limits in the range of 0.06 to 0.73 µg/L of phosphorus were reached. Unidentified TPs could also be quantified by using a species-unspecific calibration approach to close the phosphorus mass balance (PMB). The method's applicability was successfully demonstrated by monitoring DTPMP transformation with MnO under environmentally relevant conditions. DTPMP and its TPs were identified and quantified over the course of the transformation experiment with PMB values ≥73 %. This rapid, straightforward, robust and highly sensitive approach offers an effective means of quantifying (aminopoly)phosphonates and their TPs, contributing to a better understanding of their environmental fate and impact.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2025.465843 | DOI Listing |
J Chromatogr A
March 2025
Department of Chemistry, University of Memphis, Memphis, TN, 38152, USA. Electronic address:
Polymer liquid chromatography at critical conditions (LCCC) is a chromatographic separation condition achieved by carefully balancing the interaction of a polymer with stationary and mobile phases to make the elution time of a polymer in chromatography independent of its molecular weight. By removing the dependence of elution time on polymer molecular weight, the LCCC then allows separation of polymer samples on the basis of secondary differences, such as topology, branching, and end-group functionality, that are otherwise difficult to resolve. Despite its potential, LCCC remains under-employed due to the complexity of its optimization and the scattered nature of existing data.
View Article and Find Full Text PDFAdv Sci (Weinh)
March 2025
State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
Spatially resolved characterization of proteoforms has substantial potential to significantly advance the understanding of physiological and disease mechanisms. However, challenges remain regarding throughput and coverage. A robust method is developed for high-throughput proteoform imaging (HTPi) by combining matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) and region-specific top-down proteomic analysis.
View Article and Find Full Text PDFBiomed Chromatogr
April 2025
Cambrex High Point, High Point, North Carolina, USA.
A quality by design (QbD)-based high-resolution, stability-indicating high-performance liquid chromatography (HPLC) method was developed for determining impurities in loperamide hydrochloride (LPH) tablet dosage forms. Using this method, eight known impurities were qualified, and three degradants were quantified with excellent peak resolution. Mobile Phase-A consisted of 0.
View Article and Find Full Text PDFJ Chromatogr A
March 2025
Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, 1050 Brussel, Belgium. Electronic address:
Chromatographic problem solving, commonly referred to as method development (MD), is hugely complex, given the many operational parameters that must be optimized and their large effect on the elution times of individual sample compounds. Recently, the use of reinforcement learning has been proposed to automate and expedite this process for liquid chromatography (LC). This study further explores deep reinforcement learning (RL) for LC method development.
View Article and Find Full Text PDFJ Pharm Biomed Anal
March 2025
Department of Forensic Toxicology, Institute of Forensic Sciences, Ankara University, Ankara 06620, Turkiye. Electronic address:
Diazepam, a widely prescribed benzodiazepine, is frequently used for the management of alcohol withdrawal syndrome, anxiety, seizures, and muscle spasms. Its monitoring is critical due to its potential for abuse and the therapeutic importance of its metabolite nordiazepam. A sustainable and environmentally friendly high-performance liquid chromatography method was developed and validated for the quantification of diazepam and its active metabolite nordiazepam in human plasma samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!