In this work, a 3D-printed metal column engineered specifically for micro gas chromatography applications was developed, and an in-depth characterization of its performance and gas separation capabilities were conducted. A microchip gas chromatography column, with dimensions 7.0 × 7.0 × 0.2 cm, was fabricated via Direct Metal Laser Sintering (DMLS) technology using die steel powder. The column incorporates a 3-meter-long circular spiral channel, possessing an internal diameter of 500 μm, and employs OV-1 as the stationary phase. To enable efficient heating, a ceramic plate was affixed to one side of the column. The entire assembly weighs 118 g, facilitating the flexible adjustment of column length in a series configuration, thereby enhancing the analysis of complex mixtures. The column exhibited outstanding separation capabilities across mixtures encompassing ketones, aromatics, alkanes, and alcohols, demonstrating consistent repeatability. Notably, it enabled rapid temperature programming at an impressive rate of 120 °C/min within the boiling point spectrum spanning of C to C, while maintaining its superior separation performance. This innovative design has achieved remarkable success in separating Benzene Toluene Ethylbenzene & Xylene (BTEX), volatile organic compounds (VOCs), and gasoline, thereby spotlighting its exceptional separation efficiency. Moreover, it offers a viable solution to the prevalent challenges commonly faced by microchip columns, including manufacturing complexity, low repeatability, and high production costs. Significantly, it stands as the longest chromatography column currently employing 3D printing technology for micro gas chromatography and provides significant insights into optimizing column length through the construction of large-curvature channels on a constrained planar substrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2025.465842 | DOI Listing |
Environ Sci Technol
March 2025
Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
This study explores the correlation of contaminants of emerging concern (CECs) in wastewater effluents using liquid chromatography (LC), supercritical fluid chromatography (SFC), and comprehensive two-dimensional gas chromatography (GC × GC) with derivatization, all coupled to high-resolution mass spectrometry (HRMS). Over 300 compounds, including frequently overlooked highly polar and nonpharmaceutical CECs, were identified. Monitoring programs mainly focus on reducing variability and assessing pollution in wastewater treatment plant (WWTP) effluents under dry weather conditions, often neglecting wet-weather discharges.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA.
The availability of water-soluble nanoparticles allows catalytic reactions to occur in highly desirable green environments. The catalytic activity and selectivity of water-soluble palladium nanoparticles capped with 6-(carboxylate)hexanethiolate (C6-PdNP) and 5-(trimethylammonio)pentanethiolate (C5-PdNP) were investigated for the reduction of 4-nitrophenol, the oxidation of α,β-conjugated aldehydes, and the C-C coupling of phenylboronic acid. The study showed that between the two PdNPs, C6-PdNP exhibits better catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride and the selective oxidation of conjugated aldehydes to conjugated carboxylic acids.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China.
A covalent organic framework TPB-DMTP was physically coated onto the gully-like surface of stainless-steel fiber. The fabricated TPB-DMTP-coated stainless-steel fiber was used to extract five phthalic acid esters (PAEs) prior to the GC-FID separation and determination in bottled tea beverages. The developed SPME-GC-FID method gave limits of detection (S/N = 3) from 0.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China.
In this paper, a novel robust TFPA-TTA-COF coating with nano pores was grafted to the gully-like surface of stainless steel fibers (GS-SSF). The GS-SSF were prepared using a two-step electrochemical etching method, and the covalent organic framework (COF) TFPA-TTA-COF coating was chemically bonded to the gully-like surface via in situ growth. The prepared metal fibers were applied as the headspace solid-phase microextraction (HS-SPME) fibers and combined with gas chromatography (GC) to develop a detection method for phenolic compounds (PCs) in water.
View Article and Find Full Text PDFFront Microbiol
February 2025
Agroscope, Mycology Group, Nyon, Switzerland.
Co-cultivation of microorganisms has emerged as a promising methodology for deciphering the intricate molecular interactions between species. This approach facilitates the replication of natural niches of ecological or clinical relevance where microbes consistently interact. In this context, increasing attention has been addressed toward elucidating the molecular crosstalk within fungal co-cultures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!