TLR4-mediated endoplasmic reticulum stress regulates pyroptosis in macrophages infected with the Bacillus Calmette-Guérin mycobacterial.

Int Immunopharmacol

School of Life Sciences, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China. Electronic address:

Published: March 2025

Tuberculosis results from Mycobacterium tuberculosis (Mtb) infection. Immune responses controlled by Toll-like receptor 4 (TLR4) are closely associated with the host response to pathogens, including Mtb. NLRP3 inflammasome-mediated pyroptosis forms a significant part of the inflammatory response during Mtb infection, and endoplasmic reticulum stress (ERS) is implicated in the activation of the NLRP3 inflammasome. Here, the function of TLR4 in macrophage pyroptosis induced by infection with the Bacillus Calmette-Guérin (BCG) mycobacterial strain was investigated. It was found that infection with BCG activated TLR4 signaling, induced ERS and subsequent NLRP3 inflammasome activation, leading to pyroptosis in mouse lung tissues. The TLR4 inhibitor TAK 242 inhibited the ERS onset, NLRP3 inflammasome stimulation, and pyroptosis, while the ERS inhibitor TUDCA blocked both inflammasome activation and pyroptosis, and the NLRP3 inhibitor MCC950 specifically inhibited pyroptosis. Furthermore, TAK 242, TUDCA, and MCC950 all exacerbated lung injury caused by BCG infection and promoted BCG survival. Similarly, after in BCG-infected THP-1 macrophages, TLR4 signaling was found to mediate NLRP3 inflammasome activation through ERS, thereby inducing pyroptosis. In summary, BCG infection leads to macrophage pyroptosis via the TLR4/ERS/NLRP3 inflammasome signaling axis, providing new insights for further research into the pathogenesis and treatment of tuberculosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2025.114346DOI Listing

Publication Analysis

Top Keywords

nlrp3 inflammasome
16
inflammasome activation
12
pyroptosis
9
endoplasmic reticulum
8
reticulum stress
8
bacillus calmette-guérin
8
mtb infection
8
macrophage pyroptosis
8
tlr4 signaling
8
tak 242
8

Similar Publications

Electroacupuncture Inhibits NLRP3-Mediated Microglial Pyroptosis to Ameliorate Chronic Neuropathic Pain in Rats.

J Pain Res

March 2025

Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People's Republic of China.

Background: Patients with neuropathic pain (NP), caused by injury or disease of the somatosensory nervous system, usually suffer from severe pain. Our previous studies revealed that electroacupuncture (EA) stimulation could effectively improve NP. However, the underlying mechanisms of EA have not been fully clarified.

View Article and Find Full Text PDF

Prion protein fragment (106-126) activates NLRP3 inflammasome and promotes platelet-monocyte/neutrophil interactions, potentially contributing to an inflammatory state.

Front Cell Dev Biol

February 2025

Centre for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.

Introduction: Prion diseases are neurodegenerative disorders where infectious prion proteins (PrP) featuring an amyloidogenic amino acid sequence, PrP (106-126), accumulate in the brain leading to neuroinflammation while it can also access circulation by breaching the blood-brain barrier. Platelets are highly sensitive cells in blood, which have been widely employed as "peripheral" model for neurons. In addition to their stellar roles in hemostasis and thrombosis, platelets are also known to function as immune cells and possess necessary components of functional inflammasome.

View Article and Find Full Text PDF

The opioid crisis has highlighted the urgent need for alternative pain management strategies. This review explores novel non-opioid targets and pathways involved in pain modulation, highlighting advancements in understanding and therapeutic potential. Pain, a multifaceted phenomenon with nociceptive, neuropathic, and inflammatory components, involves intricate molecular signaling cascades.

View Article and Find Full Text PDF

Sauchinone preserves cardiac function in doxorubicin-induced cardiomyopathy by inhibiting the NLRP3 inflammasome.

Phytomedicine

March 2025

Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, Jiangsu 214122, China; Department of Cardiology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan university, Wuxi, Jiangsu 214122, China. Electronic address:

Background: Doxorubicin (Dox)-induced cardiomyopathy (DIC) is characterized by severe myocardial damage that can progress to dilated cardiomyopathy and potentially lead to heart failure. No effective prevention or treatment strategies are available for DIC. Sauchinone, a diastereomeric lignan isolated from Saururus chinensis, is known for its notable anti-inflammatory effects.

View Article and Find Full Text PDF

IntroductionThe objective of this study was to explore the effect of KLF9 on oxidative stress (OS) and NLRP3-mediated inflammation in preeclampsia (PE).MethodsLipopolysaccharide (LPS)+adenosine triphosphate (ATP)-induced HTR-8/SVneo cells were used as an PE inflammation cell model. shRNA was used to interfere with KLF9 expression (sh-KLF9) to assess the transfection efficiency and the effect of KLF9 on cell proliferation, migration, and invasion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!