Proteolysis targeting chimera (PROTAC)-based degraders are highly potent pseudocatalytic drugs, but on-target off-site homing could yield undesirable consequences. We report here a generalizable AND-logic gated PROTAC, where the concurrent presence of two different disease-relevant endogenous stimuli liberates an active protein degrader. We design Dual-Action-Only PROTAC (DAO-PROTAC) molecules that are dormant and can only be activated in the presence of both hypoxia and cathepsin-L to degrade the protein of interest (POI). We also show that the dormancy of DAO-PROTACs translates to considerable mitigation of cytotoxicity, demonstrating the potential advantages over the corresponding free PROTAC and single-stimulus triggerable pro-PROTACs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.5c00131 | DOI Listing |
J Am Chem Soc
March 2025
Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.
Proteolysis targeting chimera (PROTAC)-based degraders are highly potent pseudocatalytic drugs, but on-target off-site homing could yield undesirable consequences. We report here a generalizable AND-logic gated PROTAC, where the concurrent presence of two different disease-relevant endogenous stimuli liberates an active protein degrader. We design Dual-Action-Only PROTAC (DAO-PROTAC) molecules that are dormant and can only be activated in the presence of both hypoxia and cathepsin-L to degrade the protein of interest (POI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!