Deciphering the Luminescence Spectral Shape of an Oxyluciferin Analogue through a Mixed Quantum-Classical Approach.

J Phys Chem B

Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR), Area della Ricerca, Via G. Moruzzi 1, Pisa I-56124, Italy.

Published: March 2025

In this contribution, we present a computational study on the absorption and emission spectra of the anion in water, an analogue of the firefly oxyluciferin phenolate keto form. This compound displays a broad absorption spectrum and a large Stokes shift, two features that remain elusive to computational approaches, preventing a complete understanding of the photophysics behind this molecule. Here we attempt a fully first-principles computation of both absorption and emission spectral shapes and positions, explicitly including the effect of soft molecular flexible modes and of the stiff vibrational motions as well as those of the solvent. Namely, we adopt a recently developed mixed-quantum classical approach, the so-called Adiabatic Molecular Dynamics-generalized vertical Hessian (Ad-MD|gVH) method, which has been revealed to be well suited to reproduce band shapes in condensed phases. We also explore the performance of DFT functionals to build the potential energy surfaces and investigate the possible role of interstate couplings. By this means, we are able to obtain a first-principles simulation of the emission band shape close to the experimental one, and we correctly reproduce the two-peak shape of the absorption spectrum, both in terms of their spacing and relative intensity. However, the low-energy band of the computed absorption spectrum is too narrow, and the Stokes shift is remarkably underestimated. Through a careful analysis of different computational settings, we are able to identify some key aspects that partly explain these discrepancies, including the limitations of TD-DFT to properly describe the electronic energy along the flexible torsional degree of freedom in the lowest-excited state and the key role of mutual polarization of the solvent and the dye.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.4c06683DOI Listing

Publication Analysis

Top Keywords

absorption spectrum
12
absorption emission
8
stokes shift
8
absorption
5
deciphering luminescence
4
luminescence spectral
4
spectral shape
4
shape oxyluciferin
4
oxyluciferin analogue
4
analogue mixed
4

Similar Publications

Spectroscopic Manifestation of a Weak van der Waals Interaction Between -Stilbene and Hexagonal Boron Nitride Surface.

Langmuir

March 2025

Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, via Giovanni Paolo II 132, Fisciano, Salerno 84084, Italy.

The interaction between organic molecules and nanomaterials leads to complexation or the functionalization of later and modification of their properties, which are promising for electronics, terahertz technology, photonics, medical imaging, drug delivery, and other applications. Based on theoretical and experimental (THz, Raman, and fluorescence spectroscopy) studies, we analyzed the main spectroscopic characteristics of a weakly bound van der Waals complex of -stilbene (TS) molecule and hexagonal boron nitride (hBN). Raman scattering was demonstrated to be the most effective tool to confirm complex formation, exhibiting blue-shifted TS fingerprint lines in the TS + hBN Raman spectrum with respect to the spectra of pure TS or BN.

View Article and Find Full Text PDF

Quantum dots (QDs), particularly those in the short-wavelength infrared (SWIR) range, have garnered significant attention for their unique optical and electrical properties resulting from 3D quantum confinement. Among the various chalcogenide-based QDs, lead chalcogenides, such as PbS and PbSe, are extensively studied for infrared photodetection applications. While PbSe QDs offer advantages over PbS, including a narrower bandgap and higher carrier mobility, they suffer from stability issues due to surface oxidation and particle aggregation.

View Article and Find Full Text PDF

The use of metal nanoparticles is gaining popularity owing to their low cost and high efficacy. We focused on green synthesis of silver nanoparticles (AgNPs) using (Tc) leaf extracts. The structural characteristics of Tc nanoparticles (TcAgNPs) were determined using several advanced techniques.

View Article and Find Full Text PDF

Diffuse optical spectroscopy (DOS) is a rapidly advancing non-invasive diagnostic technique to investigate biological tissue, based on probing the target object with optical radiation in the visible and/or near-infrared wavelength range and detecting the diffusely scattered light from the tissue. The signals obtained through DOS provide extensive information about the biochemical composition of tissues due to the presence of light-absorbing compounds known as chromophores. To date, DOS is widely employed to detect major chromophores such as deoxygenated (Hb) and oxygenated (HbO) hemoglobin, water, lipids, and melanin.

View Article and Find Full Text PDF

Switchable Multi-Spectral Electromagnetic Defense in the Ultraviolet, Visible, Infrared, Gigahertz, and Terahertz Bands Using a Magnetically-Controllable Soft Actuator.

ACS Nano

March 2025

National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin 300350, P.R. China.

Traditional passive single-spectrum electromagnetic defense materials are inadequate to defend against complex multispectral electromagnetic threats. Herein, a bilayer heterofilm (BLH film)-based magnetically controllable soft actuator (MCSA), comprising a defense unit and a drive unit, is constructed. The defense unit offers multispectral electromagnetic protection, while the drive unit enables active defense via magnetic actuation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!