The long-term success of introduced populations depends on both their initial size and ability to compete against existing residents, but it remains unclear how these factors collectively shape colonization dynamics. Here, we investigate how initial population (propagule) size shapes the outcome of community coalescence by systematically mixing eight pairs of in vitro microbial communities at ratios that vary over six orders of magnitude, and we compare our results to neutral ecological theory. Although the composition of the resulting cocultures deviated substantially from neutral expectations, each coculture contained species whose relative abundance depended on propagule size even after ~40 generations of growth. Using a consumer-resource model, we show that this dose-dependent colonization can arise when resident and introduced species have high niche overlap and consume shared resources at similar rates. Strain isolates displayed longer-lasting dose dependence when introduced into diverse communities than in pairwise cocultures, consistent with our model's prediction that propagule size should have larger, more persistent effects in diverse communities. Our model also successfully predicted that species with similar resource-utilization profiles, as inferred from growth in spent media and untargeted metabolomics, would show stronger dose dependence in pairwise coculture. This work demonstrates that transient, dose-dependent colonization dynamics can emerge from resource competition and exert long-term effects on the outcomes of community coalescence.

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2322440122DOI Listing

Publication Analysis

Top Keywords

propagule size
12
shared resources
8
initial population
8
microbial communities
8
colonization dynamics
8
community coalescence
8
dose-dependent colonization
8
dose dependence
8
diverse communities
8
size
5

Similar Publications

The long-term success of introduced populations depends on both their initial size and ability to compete against existing residents, but it remains unclear how these factors collectively shape colonization dynamics. Here, we investigate how initial population (propagule) size shapes the outcome of community coalescence by systematically mixing eight pairs of in vitro microbial communities at ratios that vary over six orders of magnitude, and we compare our results to neutral ecological theory. Although the composition of the resulting cocultures deviated substantially from neutral expectations, each coculture contained species whose relative abundance depended on propagule size even after ~40 generations of growth.

View Article and Find Full Text PDF

Species are disappearing worldwide, and it is likely that the rate of their disappearance will increase. The most important factors responsible for this are assumed to be changes in climate and land use. To determine the probability of extinction of a given species, it must be viewed as a metapopulation composed of many populations.

View Article and Find Full Text PDF

Impoundments facilitate upstream invasion and introgression: Case studies of fluvial black basses (Micropterus spp.) in the southeastern USA.

PLoS One

February 2025

U.S. Geological Survey, Oklahoma Cooperative Fish and Wildlife Research Unit, Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, United States of America.

Impoundment construction has resulted in the alternation and loss of fluvial habitats, threatening the persistence of many native fishes. Compounding this threat, non-native species stocked into impoundments often invade interconnected fluvial habitats, where they may negatively affect native species. Black basses (genus Micropterus) are popular sportfishes with divergent ecologies: some taxa are tolerant of impoundments and widely stocked to create fishing opportunities, whereas others are endemic fluvial specialists that are threatened by introgression with non-native congeneric taxa.

View Article and Find Full Text PDF

Dispersal is one of the main processes shaping ecological communities. Yet, for species-rich communities in natural systems, the role of dispersal in community assembly remains relatively less studied compared to other processes. This is the case for fungal communities, for which predictable knowledge about where and how the dispersal propagules move across space is largely lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!