A key feature of biological and artificial neural networks is the progressive refinement of their neural representations with experience. In neuroscience, this fact has inspired several recent studies in sensory and motor systems. However, less is known about how higher associational cortical areas, such as the hippocampus, modify representations throughout the learning of complex tasks. Here, we focus on associative learning, a process that requires forming a connection between the representations of different variables for appropriate behavioral response. We trained rats in a space-context associative task and monitored hippocampal neural activity throughout the entire learning period, over several days. This allowed us to assess changes in the representations of context, movement direction, and position, as well as their relationship to behavior. We identified a hierarchical representational structure in the encoding of these three task variables that was preserved throughout learning. Nevertheless, we also observed changes at the lower levels of the hierarchy where context was encoded. These changes were local in neural activity space and restricted to physical positions where context identification was necessary for correct decision-making, supporting better context decoding and contextual code compression. Our results demonstrate that the hippocampal code not only accommodates hierarchical relationships between different variables but also enables efficient learning through minimal changes in neural activity space. Beyond the hippocampus, our work reveals a representation learning mechanism that might be implemented in other biological and artificial networks performing similar tasks.

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2417025122DOI Listing

Publication Analysis

Top Keywords

neural activity
12
biological artificial
8
activity space
8
learning
7
neural
5
learning reshapes
4
reshapes hippocampal
4
hippocampal representation
4
representation hierarchy
4
hierarchy key
4

Similar Publications

Fiber photometry has become a popular technique to measure neural activity in vivo, but common analysis strategies can reduce the detection of effects because they condense signals into summary measures, and discard trial-level information by averaging . We propose a novel photometry statistical framework based on functional linear mixed modeling, which enables hypothesis testing of variable effects at , and uses trial-level signals without averaging. This makes it possible to compare the timing and magnitude of signals across conditions while accounting for between-animal differences.

View Article and Find Full Text PDF

Rehabilitation robotics aims to promote activity-dependent reorganization of the nervous system. However, people with paralysis cannot generate sufficient activity during robot-assisted rehabilitation and, consequently, do not benefit from these therapies. Here, we developed an implantable spinal cord neuroprosthesis operating in a closed loop to promote robust activity during walking and cycling assisted by robotic devices.

View Article and Find Full Text PDF

Resting brain activity, in the absence of explicit tasks, appears as distributed spatiotemporal patterns that reflect structural connectivity and correlate with behavioral traits. However, its role in shaping behavior remains unclear. Recent evidence shows that resting-state spatial patterns not only align with task-evoked topographies but also encode distinct visual (e.

View Article and Find Full Text PDF

Many current image restoration approaches utilize neural networks to acquire robust image-level priors from extensive datasets, aiming to reconstruct missing details. Nevertheless, these methods often falter with images that exhibit significant information gaps. While incorporating external priors or leveraging reference images can provide supplemental information, these strategies are limited in their practical scope.

View Article and Find Full Text PDF

Cancer gene identification through integrating causal prompting large language model with omics data-driven causal inference.

Brief Bioinform

March 2025

School of Artificial Intelligence, Jilin University, 3003 Qianjin Street, Changchun 130012, Jilin Province, China.

Identifying genes causally linked to cancer from a multi-omics perspective is essential for understanding the mechanisms of cancer and improving therapeutic strategies. Traditional statistical and machine-learning methods that rely on generalized correlation approaches to identify cancer genes often produce redundant, biased predictions with limited interpretability, largely due to overlooking confounding factors, selection biases, and the nonlinear activation function in neural networks. In this study, we introduce a novel framework for identifying cancer genes across multiple omics domains, named ICGI (Integrative Causal Gene Identification), which leverages a large language model (LLM) prompted with causality contextual cues and prompts, in conjunction with data-driven causal feature selection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!