High-performance Fe-based nitrogen-doped carbon oxygen reduction catalysts have been widely reported, but the Fenton reaction faced by such catalysts has hindered their practical application in fuel cells. The development of inexpensive, effective, and durable non-Fe nitrogen-doped carbon electrocatalysts is important for advancing fuel cell technology. In this work, we have introduced a molecular coordination chemistry method to synthesize a Cu- and P-co-doped nitrogen-doped hierarchical carbon (Cu-P-N-C) oxygen reduction reaction (ORR) electrocatalyst by pyrolyzing a mixture of phytate and melamine. The refined Cu-P-N-C material showcased a three-dimensional, porous, interconnected nanosheet structure with an ultra-high specific surface area and an abundance of active sites. The Cu-P-N-C catalyst displayed a half-wave potential () of 0.86 V, higher than that of commercial Pt/C in 0.1 M KOH. It was also found to maintain an impressive long-term stability, retaining 95.4% of its initial activity after extensive testing. When integrated into zinc-air batteries (ZABs), the Cu-P-N-C electrocatalyst was observed to deliver exceptional performance, achieving a high peak power density of 164.5 mW cm, a promising specific capacity of 807 mA h g, and remarkable stability. These findings underscore the potential of Cu-P-N-C as a potential candidate for next-generation ORR electrocatalysts in new energy devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4dt03156c | DOI Listing |
Small
March 2025
Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia.
The design of highly efficient photocatalysts to photoreduce nitrogen (N) to ammonia (NH) under mild conditions is extremely challenging. In this work, various molar ratio of molybdenum (Mo) is incorporated into BiOCl via a hydrothermal process. The resulting Mo-doped BiOCl exhibits remarkable solar-driven activity for N photo fixation without any scavengers or sacrificial agents.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568, Japan.
Ultrafast laser processing is a critical technology for micro- and nano-fabrication due to its ability to minimize heat-affected zones. The effects of intensity variation on the ultrafast laser ablation of fused silica were investigated to gain fundamental insights into the dynamic modulation of pulse intensity. This study revealed significant enhancement in ablation efficiency for downward ramp intensity modulation compared to the upward ramp.
View Article and Find Full Text PDFPhys Chem Chem Phys
March 2025
ICGM, Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier, cedex 5, France.
Platinum-based nanoalloys are efficient electrocatalysts for the oxygen reduction reaction (ORR). measurements have revealed that key properties including induced strain, chemical composition, coordination environment, evolve significantly during operation, which can hampertheir effective implementation in fuel cells. In fact, recent studies indicate that the impact of the early surface activation steps of Pt-based nanoalloys has been hitherto underestimated and is an important factor contributing to loss of their initial electroactivity.
View Article and Find Full Text PDFChem Rev
March 2025
WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia 6102, Australia.
Since photocatalytic and electrocatalytic technologies are crucial for tackling the energy and environmental challenges, significant efforts have been put into exploring advanced catalysts. Among them, perovskite type ABO oxides show great promising catalytic activities because of their flexible physical and chemical properties. In this review, the fundamentals and recent progress in the synthesis of perovskite type ABO oxides are considered.
View Article and Find Full Text PDFSovrem Tekhnologii Med
March 2025
PhD, Senior Researcher, Laser Biospectroscopy Laboratory, Light-Induced Surface Phenomena Department, Natural Sciences Center; Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., Moscow, 119991, Russia; Associate Professor, Department 87 "Laser Micro-, Nano-, and Biotechnologies, Engineering Physics Institute for Biomedicine"; National Research Nuclear University MEPhI, 31 Kashirskoye Highway, Moscow, 115409, Russia.
Unlabelled: The application of photosensitizers for inhibition of oxidative phosphorylation in order to temporally decrease oxygen uptake by tumor cells in the course of photodynamic therapy (PDT) evokes growing interest. is to overcome tumor hypoxia for further photodynamic therapy with simultaneous use of type I photosensitizer methylene blue (MB) and type II photosensitizer chlorin e6.
Material And Methods: A photodynamic activity of MB and its combined use with chlorin e6 has been studied on the HeLa cell culture, their effect on cell metabolism in their co-accumulation and subsequent irradiation has also been assessed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!