Introduction: Apigenin, a widely distributed bioactive flavonoid, has recently gained excellent attention among researchers as an effective anticancer drug that can alternate cancer signaling pathways, induce programmed cell death, and reduce tumor growth in various cancer types. Despite its impressive anti-neoplastic activity, high hydrophobicity and nonspecific biodistribution make apigenin difficult for pharmaceutical application.
Areas Covered: We highlighted the therapeutic potential of apigenin and its derivatives in different cancer types, along with their mechanism of action. Nanoengineered drug delivery systems have remarkable applications in minimizing drug degradation and enhancing the therapeutic efficacy of drugs with sustained release, prolonged blood retention time, and reduced off-target toxicities. This review has evaluated and explored the molecular interactions of this novel flavonoid in various cancer signaling pathways to selectively inhibit neoplastic development in multiple cancer types. To ensure the complete coverage of the explored research area, google scholar, PubMed, and web of science were used to find not only the most relevant, but also connected and similar articles.
Expert Opinion: A comprehensive overview of apigenin nanotherapy in cancer treatment can establish a platform to overcome its difficulties for pharmaceutical application and efficient clinical translation from bench to bedside.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17425247.2025.2477664 | DOI Listing |
Elife
March 2025
Department of Pathology, Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
Background: Cervical adenocarcinoma (ADC) is more aggressive compared to other types of cervical cancer (CC), such as squamous cell carcinoma (SCC). The tumor immune microenvironment (TIME) and tumor heterogeneity are recognized as pivotal factors in cancer progression and therapy. However, the disparities in TIME and heterogeneity between ADC and SCC are poorly understood.
View Article and Find Full Text PDFFront Pharmacol
February 2025
Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China.
Background: Ferroptosis is an intracellular iron-dependent cell death that is distinct from apoptosis, necrosis, and autophagy. Increasing evidence indicated that ferroptosis plays a crucial role in suppressing tumors, thus providing new opportunities for cancer therapy. The drug cepharanthine, commonly used to treat leukopenia, has been discovered to function as an anticancer agent to multiple types of cancer via diverse mechanisms.
View Article and Find Full Text PDFFront Physiol
February 2025
German Cancer Consortium (DKTK), Partner Site Freiburg, Heidelberg, Germany.
Introduction: Prostate cancer (PCa) is the most frequent diagnosed malignancy in male patients in Europe and radiation therapy (RT) is a main treatment option. However, current RT concepts for PCa have an imminent need to be rectified in order to modify the radiotherapeutic strategy by considering (i) the personal PCa biology in terms of radio resistance and (ii) the individual preferences of each patient.
Methods: To this end, a mechanistic multiscale model of prostate tumor response to external radiotherapeutic schemes, based on a discrete entity and discrete event simulation approach has been developed.
CD8+ tissue-resident memory T cells (TRM) are strategically located in peripheral tissues, enabling a rapid response to local infections, which is different from circulating memory CD8+ T cells. Their unique positioning makes them promising targets for vaccines designed to enhance protection at barrier sites and other organs. Recent studies have shown a correlation between CD8+ TRM cells and favorable clinical outcomes in various types of cancer, indicating their potential role in immune checkpoint blockade (ICB) therapies.
View Article and Find Full Text PDFFront Oncol
February 2025
Department of Medical Oncology, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), and CIBERONC, Madrid, Spain.
Background: Immunotherapy has gained momentum with the discovery of novel antibodies targeting immunosuppressive proteins. HLA-E, a non-classical major histocompatibility complex class I (MHC-I) protein, exhibits immunosuppressive properties, potentially influencing tumor immune evasion mechanisms. The association between Human Leukocyte Antigen E (HLA-E) expression and outcomes in solid tumors remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!