Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain-machine interfaces have changed over time, along with the available technology. Mechanical levers and cable winches were used to move parts of the brain during the mechanical age. Sophisticated electronic wiring and remote control have arisen during the electronic age, ultimately leading to plug-and-play computer interfaces. Nonetheless, our brains are so complex that these visions, until recently, largely remained unreachable dreams. The general problem, thus far, is that most of our technology is mechanically and/or electrically engineered, whereas the brain is a living, dynamic entity. As a result, these worlds are difficult to interface with one another. Nanotechnology, which encompasses engineered solid-state objects and integrated circuits, excels at small length scales of single to a few hundred nanometers and, thus, matches the sizes of biomolecules, biomolecular assemblies, and parts of cells. Consequently, we envision nanomaterials and nanotools as opportunities to interface with the brain in alternative ways. Here, we review the existing literature on the use of nanotechnology in brain-machine interfaces and look forward in discussing perspectives and limitations based on the authors' expertise across a range of complementary disciplines─from neuroscience, engineering, physics, and chemistry to biology and medicine, computer science and mathematics, and social science and jurisprudence. We focus on nanotechnology but also include information from related fields when useful and complementary.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c10525DOI Listing

Publication Analysis

Top Keywords

brain-machine interfaces
8
interfacing brain
4
nanotechnology
4
brain nanotechnology
4
nanotechnology contribute
4
contribute interfacing
4
interfacing artificial
4
artificial devices
4
devices human
4
brain
4

Similar Publications

There is limited work investigating Brain-Computer Interface (BCI) technology in people with Multiple Sclerosis (pwMS), a neurodegenerative disorder of the central nervous system. Present work is limited to recordings at the scalp, which may be significantly altered by changes within the cortex due to volume conduction. The recordings obtained from the sensors, therefore, combine disease-related alterations and task-relevant neural signals, as well as signals from other regions of the brain that are not relevant.

View Article and Find Full Text PDF

Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain-machine interfaces have changed over time, along with the available technology.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) are an advanced fusion of neuroscience and artificial intelligence, requiring stable and long-term decoding of neural signals. Spiking Neural Networks (SNNs), with their neuronal dynamics and spike-based signal processing, are inherently well-suited for this task. This paper presents a novel approach utilizing a Multiscale Fusion enhanced Spiking Neural Network (MFSNN).

View Article and Find Full Text PDF

Introduction: Intracortical Brain-computer interfaces (iBCIs) are a promising technology to restore function after stroke. It remains unclear whether iBCIs will be able to use the signals available in the neocortex overlying stroke affecting the underlying white matter and basal ganglia.

Methods: Here, we decoded both local field potentials (LFPs) and spikes recorded from intracortical electrode arrays in a person with chronic cerebral subcortical stroke performing various tasks with his paretic hand, with and without a powered orthosis.

View Article and Find Full Text PDF

Noninvasive brain-computer interfaces (BCIs) have rapidly developed over the past decade. This new technology utilizes magneto-electrical recording or hemodynamic imaging approaches to acquire neurophysiological signals noninvasively, such as electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). These noninvasive signals have different temporal resolutions ranging from milliseconds to seconds and various spatial resolutions ranging from centimeters to millimeters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!