Non-CG DNA methylation represses SDC expression to modulate hypocotyl elongation during thermormorphogenesis.

J Exp Bot

Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina.

Published: March 2025

Plants adapt to warm environments through physiological and morphological changes termed thermomorphogenesis, which involve transcriptional reprogramming exerted mainly by PHYTOCHROME INTERACTING FACTOR 4 (PIF4). Fluctuating temperatures can also influence the patterns of cytosine DNA methylation, thereby influencing gene expression. However, whether these epigenetic changes provide an adaptative advantage remains unclear. Here, we provide evidence that DNA methylation is required to regulate thermomorphogenesis. Hypomethylated drm1 drm2 cmt3 mutants or seedlings treated with 5-azacytidine to block DNA methylation exhibit reduced hypocotyl growth at warm temperatures, primarily due to impaired cell elongation. Moreover, DNA hypomethylation compromises auxin biosynthesis and transport in response to warmth, partially by reducing PIF4 protein levels. Notably, the loss of DNA methylation leads to increased expression of SUPPRESSOR OF drm1 drm2 cmt3 (SDC), which in turn restricts hypocotyl elongation during thermomorphogenesis. Finally, we demonstrate that DNAme regulates the inhibition of SDC expression to promote gibberellin biosynthesis. Our findings underscore the critical role of DNA methylation in modulating gene expression in response to temperature fluctuations and provide new insights into the epigenetic regulation of thermomorphogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/eraf105DOI Listing

Publication Analysis

Top Keywords

dna methylation
24
sdc expression
8
hypocotyl elongation
8
gene expression
8
drm1 drm2
8
drm2 cmt3
8
methylation
6
dna
6
expression
5
non-cg dna
4

Similar Publications

Aortic valve stenosis (AVS) is a progressive disease, wherein males more often develop valve calcification relative to females that develop valve fibrosis. Valvular interstitial cells (VICs) aberrantly activate to myofibroblasts during AVS, driving the fibrotic valve phenotype in females. Myofibroblasts further differentiate into osteoblast-like cells and produce calcium nanoparticles, driving valve calcification in males.

View Article and Find Full Text PDF

DNA polymerase β, a member of the X-family of DNA polymerases, undergoes complex regulations both in vitro and in vivo through various posttranslational modifications, including phosphorylation and methylation. The impact of these modifications varies depending on the specific amino acid undergoing alterations. In vitro, methylation of DNA polymerase β with the enzyme protein arginine methyltransferase 6 (PRMT6) at R83 and R152 enhances polymerase activity by improving DNA binding and processivity.

View Article and Find Full Text PDF

The activity of Wnt inhibitory factor 1 (WIF1) is reduced upon promoter methylation and is involved in cartilage degradation in osteoarthritis. This study aims to investigate the mechanism by which WIF1 methylation is involved in chondrocyte damage in ankylosing spondylitis (AS). A model of chondrocyte inflammatory injury in AS was constructed by stimulation with interleukin (IL)-17.

View Article and Find Full Text PDF

Neuroendocrine tumors (NET) of the lung constitute a rare entity of primary lung malignancies that often exhibit an indolent clinical course. Epigenetics-related differences have been described previously for lung NET, but the clinical significance remains unclear. In this study, we performed genome-wide methylation analysis using the Infinium MethylationEPIC BeadChip technology on FFPE tissues from lung NET treated at two academic centers.

View Article and Find Full Text PDF

Long non-coding RNA (lncRNA) TINCR has been shown to play a crucial regulatory role in various tumors. However, its specific mechanism of action in cutaneous squamous cell carcinoma (CSCC) remains unclear. This study aimed to explore the role of lncRNA TINCR in CSCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!