Root exudation is the process by which plants release organic and inorganic metabolites from their roots into the surrounding soil. Root exudation is a dynamic process and shapes plant-environment interactions at the root-soil interface. Little is known about the biological and environmental factors that shape the exuded metabolome, hereafter referred to as the exudome, despite its importance in structuring soil processes. Here, we emphasize plant physiological and morphological traits that modulate the exudome in a species- and developmental stage-specific manner. We further discuss how environmental factors drive exudation processes. We highlight evidence of a potential circadian exudation rhythm and further illustrate how the physical (temperature, structure), chemical (moisture, pH, nutrients, pollutants), and biological (micro- and macrofauna) properties of soil alter the root exudome composition and release patterns. Exploring the factors that directly or indirectly modulate exudation will enhance our understanding of how this dynamic process mediates plant-environment interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev-arplant-083123-082752 | DOI Listing |
Plant Cell Environ
March 2025
Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China.
Plant growth-promoting rhizobacteria (PGPR) are widely recognized for enhancing the absorption of mineral nutrients by crops. While Sphingobium species have been reported as PGPRs, their capacity to improve nitrogen use efficiency (NUE) and the underlying regulatory mechanisms are not yet fully understood. Here, a strain 41R9, isolated from the rhizosphere of N-deficient rapeseed, was found to significantly enhance the growth performance of rapeseed under both low and normal N conditions.
View Article and Find Full Text PDFEnviron Microbiome
March 2025
Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile.
Background: In plants, root exudates selectively influence the growth of bacteria that colonize the rhizosphere. Bacterial communities associated with root systems are involved in macro and micronutrients cycling and organic matter transformation. In particular, iron is an essential micronutrient required for the proper functioning of iron-containing enzymes in processes such as photosynthesis, respiration, biomolecule synthesis, redox homeostasis, and cell growth in plants.
View Article and Find Full Text PDFBMC Plant Biol
March 2025
School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
Metabolites are important signaling molecules mediating plant-microbe interaction in soil. Plant root exudates are composed of primary metabolites, secondary metabolites, and macro-molecules such as organic acids. Certain organic acids in root exudates can attract pathogenic microbes in soil and promote infection.
View Article and Find Full Text PDFJ Environ Manage
March 2025
University of Hohenheim, Faculty of Agriculture, Department Quality of Plant Products and Viticulture (340e), Schloss Westflügel, D-70599, Stuttgart, Germany. Electronic address:
Biodiversity is threatened particularly in perennial crop cultivation such as fruit trees or grapevines. If established, agroforestry has the potential to increase biodiversity by providing a higher habitat heterogeneity at the example of grapevine (Vitis vinifera L. cv.
View Article and Find Full Text PDFAnnu Rev Plant Biol
March 2025
2Institute of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland; email:
Root exudation is the process by which plants release organic and inorganic metabolites from their roots into the surrounding soil. Root exudation is a dynamic process and shapes plant-environment interactions at the root-soil interface. Little is known about the biological and environmental factors that shape the exuded metabolome, hereafter referred to as the exudome, despite its importance in structuring soil processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!