Enhanced ureide partitioning improves soybean performance under drought stress.

J Exp Bot

School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.

Published: March 2025

Soybean (Glycine max [L.] Merr.) fixes atmospheric nitrogen through a symbiotic relationship with rhizobia in root nodules to produce allantoin and allantoic acid. These ureides serve as primary nitrogen transport compounds moved from nodules to shoot in support of physiological functions and organ growth. Nodule ureide permease 1 (UPS1) is important for this transport process. Drought stress inhibits nitrogen fixation and reduces productivity in soybean, which has been associated with the accumulation of ureides in both nodule and shoot tissues. In this study, it was hypothesized that changes in ureide nodule-to-leaf-to-sink partitioning through manipulation of UPS1 function would alter ureide tissue levels, ultimately influencing soybean responses to drought stress. Soybean plants overexpressing UPS1 (UPS1-OE) were exposed to moderate and severe drought conditions. Changes in organ and phloem ureide levels indicated enhanced nodule-to-shoot ureide transport and increased sink nitrogen supply in the transgenic versus control wild-type plants. We further uncovered improvements in carbon fixation, partitioning and availability for nitrogen fixation, resulting in increased nitrogen gains and better growth of the drought-stressed UPS1-OE lines. Overall, our findings demonstrate that enhanced ureide partitioning not only contributes to improved soybean performance under well-watered conditions, but also under drought stress.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/eraf099DOI Listing

Publication Analysis

Top Keywords

drought stress
16
enhanced ureide
8
ureide partitioning
8
soybean performance
8
stress soybean
8
nitrogen fixation
8
soybean
6
nitrogen
6
ureide
6
drought
5

Similar Publications

Saline irrigation improves survival of forage sorghum but limits growth and increases toxicity.

Plant Biol (Stuttg)

March 2025

School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.

Moderately saline water has been proposed as a potential irrigation resource for crops such as forage sorghum (Sorghum bicolor × Sorghum bicolor nothosubsp. drummondii) in drought-prone regions. However, it is not yet fully understood how salinity affects growth and potential toxicity of sorghum.

View Article and Find Full Text PDF

Evolutionary and functional analysis of the DIR gene family in Moso bamboo: insights into rapid shoot growth and stress responses.

Front Plant Sci

February 2025

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, China.

Dirigent (DIR) proteins are key regulators of lignin and lignan biosynthesis and play critical roles in plant hormone responses, abiotic stress tolerance, and growth and development. This study identified and characterized 47 genes in Moso bamboo, classifying them into three groups. Phylogenetic and comparative analyses revealed strong evolutionary conservation, with the Moso bamboo genes being most closely related to those in rice and maize.

View Article and Find Full Text PDF

The drought resistance of rice is an indirect observational and complex trait whose phenotype is reflected in the response of directly observational traits to drought stress. To objectively and accurately evaluate the drought resistance of rice, soil moisture gradient quantification was designed as a general water index among different soil types. Through soil water control, water consumption calculation, yield test, trait examination, and statistical analysis, the relationship between quantitative water control treatment and rice yield drought resistance was studied to establish a quantitative and controllable evaluation system of rice drought resistance.

View Article and Find Full Text PDF

Wheat E3 ligase is involved in drought stress tolerance in transgenic .

Physiol Mol Biol Plants

February 2025

Department of Plant Resources, College of Industrial Sciences, Kongju National University, 54 Daehak-Ro, Yesan-Eup, 32439 Republic of Korea.

Unlabelled: , a wheat U-box E3 ligase gene, was isolated and characterized for its role in drought stress tolerance. The gene encodes a 531 amino acid protein with a U-box domain at the N-terminal and a WD40 domain at the C-terminal. Subcellular localization studies using TaPRP19-GFP fusion in confirmed predominant nucleus localization.

View Article and Find Full Text PDF

Unlabelled: Drought is a natural disaster that exerts considerable adverse impacts on the agricultural sector. This study aimed to investigate the cytokinin-mediated carbohydrate accumulation in the aerial parts of the plant and the roots in four-month-old drought-stressed tall fescue ( Schreb.) plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!