Ovarian cancer therapy remains a challenge for human health, partly due to chemotherapy resistance. Understanding the molecular mechanisms underlying this resistance is crucial. Therefore, to identify genes involved in cisplatin resistance in ovarian cancer, RNA-seq analysis of A2780cp (cisplatin-resistant) and A2780 (cisplatin-sensitive) cell lines was performed, revealing 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3) as a differentially expressed candidate gene. First, MTT analysis confirmed the drug resistance of A2780cp and the sensitivity of A2780 cell lines. Subsequent reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting analyses revealed elevated AGPAT3 and mTOR expression in A2780cp cells compared with A2780 cells. Additionally, western blotting showed increased p-mTOR (phospho-mTOR)/mTOR and p-S6K (phospho-S6K)/S6K ratios in A2780cp cells. The overexpression of AGPAT3 in A2780 cells led to increased p-mTOR/mTOR and p-S6K/S6K ratios and increased IC50 values, as shown by RT-qPCR, western blotting, and MTT analysis. Conversely, shRNA-mediated downregulation of AGPAT3 resulted in reduced p-mTOR/mTOR and p-S6K/S6K ratios. At the cellular level, AGPAT3 overexpression in A2780 cells increased survival rates, decreased apoptosis, and caused G2/M cell cycle arrest under cisplatin treatment, as detected by apoptosis assay, and cell cycle flow cytometry analysis. Overall, we conclude that AGPAT3 is involved in cisplatin resistance in A2780cp cells and propose that targeting this gene or its enzymatic product could help overcome drug resistance.
Download full-text PDF |
Source |
---|---|
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0318740 | PLOS |
Iran J Pharm Res
November 2024
Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: This study focused on macrocyclic diterpenes derived from Euphorbia, particularly myrsinanes, and their potential in cytotoxic and combination treatments for resistant cancer cells. We examine premyrsinanes isolated from and explore their cytotoxic properties.
Methods: was collected from Taragh-Roud, Natanz, Iran.
Cancer Metab
March 2025
Department of Medical Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.
J Adv Res
March 2025
The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha 410013 Hunan, China; Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoids Technology, 283 Tongzipo Road, Changsha 410013 Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011 Hunan, China. Electronic address:
Introduction: Oral cancer represents a significant proportion of head and neck malignancies, accounting for approximately 3 % of all malignant tumors worldwide.
Objectives: Alternative splicing (AS), a post-transcriptional regulatory mechanism, is increasingly linked to cancer development. The precise impact of AS on oral cancer progression is not well understood.
PLoS One
March 2025
Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
Ovarian cancer therapy remains a challenge for human health, partly due to chemotherapy resistance. Understanding the molecular mechanisms underlying this resistance is crucial. Therefore, to identify genes involved in cisplatin resistance in ovarian cancer, RNA-seq analysis of A2780cp (cisplatin-resistant) and A2780 (cisplatin-sensitive) cell lines was performed, revealing 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3) as a differentially expressed candidate gene.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
March 2025
Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, 330000, Jiangxi Province, China.
This study explores the molecular mechanism by which sentrin/SUMO-specific protease 1 (SENP1) promotes cisplatin (Cis) resistance and tumor stem cell characteristics in colon adenocarcinoma (COAD) through desumoylation-mediated modification of octamer-binding transcription factor 4 (OCT4). By analyzing single-cell and transcriptome sequencing datasets, we identified key genes and regulatory pathways in both resistant and sensitive COAD cells. Malignant cells were isolated and evaluated for stemness using the infercnv package, and differential genes between Cis-resistant and -sensitive groups were identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!