Skeletal muscle architecture is a key determinant of muscle function. Architectural properties such as fascicle length, pennation angle, and curvature can be characterized using Diffusion Tensor Imaging (DTI), but acquiring these data during a contraction is not currently feasible. However, an image registration-based strategy may be able to convert muscle architectural properties observed at rest to their contracted state. As an initial step toward this long-term objective, the aim of this study was to determine if an image registration strategy could be used to convert the whole-muscle average architectural properties observed in the extended joint position to those of a flexed position, following passive rotation. DTI and high-resolution fat/water scans were acquired in the lower leg of seven healthy participants on a 3T MR system in + 20° and -10° ankle positions. The diffusion and anatomical images from the two positions were used to propagate DTI fiber-tracts from seed points along a mesh representation of the aponeurosis of fiber insertion. The -10° and + 20° anatomical images were registered and the displacement fields were used to transform the mesh and fiber-tracts from the + 20° to the -10° position. Student's paired t-tests were used to compare the mean architectural parameters between the original and transformed fiber-tracts. The whole-muscle average fiber-tract length, pennation angle, curvature, and physiological cross-sectional areas estimates did not differ significantly. DTI fiber-tracts in plantarflexion can be transformed to dorsiflexion position without significantly affecting the average architectural characteristics of the fiber-tracts. In the future, a similar approach could be used to evaluate muscle architecture in a contracted state.
Download full-text PDF |
Source |
---|---|
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0302675 | PLOS |
Circ Heart Fail
March 2025
Division of Cardiovascular Medicine, School of Medicine, University of California San Diego, La Jolla. (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.).
Background: Muscle proteins of the obscurin protein family play important roles in sarcomere organization and sarcoplasmic reticulum and T-tubule architecture and function. However, their precise molecular functions and redundancies between protein family members as well as their involvement in cardiac diseases remain to be fully understood.
Methods: To investigate the functional roles of Obsc (obscurin) and its close homolog Obsl1 (obscurin-like 1) in the heart, we generated and analyzed knockout mice for , , as well as double knockouts.
EMBO Rep
March 2025
CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France.
Dynamic changes in the arrangement of myonuclei and the organization of the sarcoplasmic reticulum are important determinants of myofiber formation and muscle function. To find factors associated with muscle integrity, we perform an siRNA screen and identify SH3KBP1 as a new factor controlling myoblast fusion, myonuclear positioning, and myotube elongation. We find that the N-terminus of SH3KBP1 binds to dynamin-2 while the C-terminus associates with the endoplasmic reticulum through calnexin, which in turn control myonuclei dynamics and ER integrity, respectively.
View Article and Find Full Text PDFPLoS One
March 2025
Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.
Skeletal muscle architecture is a key determinant of muscle function. Architectural properties such as fascicle length, pennation angle, and curvature can be characterized using Diffusion Tensor Imaging (DTI), but acquiring these data during a contraction is not currently feasible. However, an image registration-based strategy may be able to convert muscle architectural properties observed at rest to their contracted state.
View Article and Find Full Text PDFTissue Eng Part C Methods
March 2025
Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA.
Sympathetic innervation plays a critical role in regulating vascular function, yet its influence on vascular regeneration and reinnervation following ischemic injury remains poorly understood. This study develops and validates murine models of localized sympathetic denervation using 6-hydroxydopamine (6-OHDA) to enable study of the sympathetic nervous system's impact on vascular systems during tissue repair. Two methods of 6-OHDA administration were employed: a single topical application during open surgery and minimally invasive weekly subcutaneous injections.
View Article and Find Full Text PDFJ Anat
March 2025
Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, USA.
Understanding the functional significance of morphological variation is crucial for investigating locomotor adaptations in fossil primates and early hominins. However, the nuanced form-function relationship in the upper limbs of extant apes is difficult to discern due to their varied locomotor behaviors, complicating the interpretation of similar features in fossil hominins. Trabecular bone, which responds to mechanical strain, reflects the intensity and direction of forces during movement, making it valuable for identifying locomotor adaptations in hominoids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!