Traumatic brain injury (TBI) results from physical damage, often caused by accidents or sports-related incidents. The causes of TBI are diverse, including concussions, brain contusions, hematomas, and skull fractures. To replicate these different causes, various TBI mouse models have been developed using distinct protocols. Physical brain injury leads to both primary and secondary brain injuries, which exacerbate neuronal loss. Primary injury occurs immediately after the damage, often due to hemorrhage, and subsequently triggers secondary injuries, including inflammation around the lesion. Developing a TBI model suitable for assessing hemorrhage extension and inflammatory severity is therefore crucial. This protocol introduces a method for mimicking penetrating brain injury, referred to as the stab-wound TBI mouse model, to study mechanisms of hemorrhage, inflammation, and neuronal loss associated with TBI pathology. This model is created by puncturing the skull and brain with needles and is simple to execute without the need for specialized experimental equipment. Additionally, the minor injury inflicted on the mouse cerebral cortex using a needle does not affect the animal's behavior post-surgery. This feature allows researchers to study the localized effects of brain injury without concerns about broader behavioral consequences. Sample data from stab-wounded mouse cerebral cortices demonstrate the model's effectiveness in assessing blood leakage into the parenchyma, glial activation, and inflammatory cytokine production. Furthermore, this protocol facilitates the evaluation of blood coagulants and anti-inflammatory compounds, aiding in the development of therapeutic agents for TBI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/67797 | DOI Listing |
Zhong Nan Da Xue Xue Bao Yi Xue Ban
October 2024
Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
Cerebral infarction is a common type of stroke with high incidence and disability rates, and most patients experience varying degrees of cognitive impairment. The manifestations and severity of post-infarction cognitive impairment are influenced by multiple interacting factors, and its pathophysiological mechanisms are highly complex, involving pericyte degeneration, excessive generation of reactive oxygen species (ROS), overproduction of glutamate, and overactivation of autophagy. After cerebral infarction, abnormal pericyte function activates neuroinflammation and facilitates the entry of inflammatory mediators into the brain; detachment of pericytes from blood vessels disrupts the integrity of the blood-brain barrier.
View Article and Find Full Text PDFCell Signal
March 2025
Department of Neurology, Northwest University School of Medicine, Xi'an 710068, China; Northwest University First Hospital, Xi'an 710043, China. Electronic address:
Ischemic stroke, a neurological condition with a complicated etiology that is accompanied by severe inflammation and oxidative stress, and ethanol (EtOH) may aggravate ischemia/reperfusion (I/R)-induced brain damage. However, the effect of prolonged alcohol intake on acute brain injury remains ambiguous. As part of the mitogen-activated protein kinase (MAPK) family, p38γ is involved in ferroptosis and inflammation in various diseases.
View Article and Find Full Text PDFNeurotoxicology
March 2025
Collaborative Innovation Center for Modern Grain Circulation and Safety, and College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China; Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, Nanjing 210023, China. Electronic address:
1-Octen-3-ol is a volatile compound widely found in various fungi and plants, and studies have suggested its potential role in the development of neurodegenerative diseases. However, the mechanism by which 1-octen-3-ol induces neural injury in rats remains unclear. In this study, we used aerosolized 1-octen-3-ol to treat depressive model rats to investigate its effects on neural injury behaviors and neurophysiology in SD rats.
View Article and Find Full Text PDFBrain Res
March 2025
Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, China; Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China. Electronic address:
Background: Externally caused traumatic brain injury (TBI) poses a woeful worldwide health concern, bringing about disability, death, and prolonged neurological impairment. Increased galectin-3 levels have been linked to unfavorable outcomes in several neurological conditions. This study explores the role of galectin-3 in TBI, specifically examining its contribution to neuroinflammation.
View Article and Find Full Text PDFLife Sci
March 2025
Department of Physiology, Hebei Medical University, 050017, Hebei, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, 050017, Hebei, China; Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, 050017, Hebei, China. Electronic address:
Aims: The present study aimed to investigate the direct link between trimethylamine N-oxide (TMAO) and diastolic dysfunction in heart failure with preserved ejection fraction (HFpEF).
Materials And Methods: Diastolic dysfunction is the main manifestation of HFpEF, so the "two-hit" mouse HFpEF model are used. After treated with high-fat diet (HFD) and N-nitro-l-arginine methyl ester (L-NAME) for 8 weeks, the cardiac function, myocardial fibrosis, oxidative stress levels, and molecular alterations were assessed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!