Chimeric antigen receptor (CAR) T cell therapy has emerged as a pioneering cancer treatment, achieving unprecedented success in treating certain hematological malignancies such as lymphomas and leukemias. However, as more cancer patients receive CAR-T cell therapies, treatment-associated secondary primary malignancies are increasingly being reported partly due to unexpected CAR transgene insertion, raising serious safety concerns. To address this issue, we describe here a nonviral, non-integrating approach to generate transient CAR-T cells using mRNA. We electroporated T cells with modified mRNA encoding a human epidermal growth factor receptor 2 (HER2)-specific CAR and generated transient HER2-targeted CAR-T cells. The CAR was efficiently expressed on the T cell surface 1 day after electroporation, increased by day 2, and dramatically declined by day 5. The transient CAR-T cells exhibited potent cytotoxicity against HER2-positive SKOV-3 ovarian cancer cells and secreted high levels of IFN-ϒ. This protocol provides a step-by-step guide for developing small-scale transient CAR-T cells without permanent CAR transgene integration, describing detailed procedures for preparation of CAR mRNA, activation and transfection of T cells, assessment of CAR expression, and in vitro analysis of CAR-T cell function. This method is suitable for transient CAR-T cell generation in both preclinical and clinical studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/67548 | DOI Listing |
J Vis Exp
February 2025
ProMab Biotechnologies;
Chimeric antigen receptor (CAR) T cell therapy has emerged as a pioneering cancer treatment, achieving unprecedented success in treating certain hematological malignancies such as lymphomas and leukemias. However, as more cancer patients receive CAR-T cell therapies, treatment-associated secondary primary malignancies are increasingly being reported partly due to unexpected CAR transgene insertion, raising serious safety concerns. To address this issue, we describe here a nonviral, non-integrating approach to generate transient CAR-T cells using mRNA.
View Article and Find Full Text PDFUnlabelled: In this study, we aimed to determine the efficacy of in vivo chimeric antigen receptor (CAR) T cell therapy, generated by targeted lipid nanoparticles (t-LNPs), as an anti-fibrotic in metabolic dysfunction-associated steatotic liver disease. Hepatic fibrosis is a key predictor of mortality in liver disease, driven by fibrogenic hepatic stellate cells (HSCs). In heart, chimeric antigen receptor (CAR) T cells targeting fibroblast activation protein alpha (FAP) reduce murine cardiac fibrosis.
View Article and Find Full Text PDFAdv Sci (Weinh)
March 2025
Department of Bioengineering, Korea University, Seoul, 02841, Republic of Korea.
Chimeric antigen receptor (CAR)-T cell therapy has revolutionized cancer treatment, yet challenges such as manufacturing complexity, high costs, and safety concerns have spurred the development of alternatives like CAR-natural killer (NK) cell immunotherapies. CAR-NK cell therapies provide innate cytotoxicity with antigen-independent targeting, reducing safety risks while improving therapeutic efficacy. However, efficient genomic engineering and large-scale production of allogeneic NK cells remain significant obstacles.
View Article and Find Full Text PDFSmall
March 2025
Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
Patterned micro/nanostructure arrays have shown the potential to effectively regulate cellular behavior, and their unique microstructure may address the limitations of conventional pore materials, leading to novel phenomena. In this work, a large-area gold micro/nano-array substrate with an average hole of ≈32 nm is designed and extensively screened. Precisely engineered nanopores on the substrate can effectively improve photothermal conversion efficiency, and instant heat dissipation in the absence of laser irradiation.
View Article and Find Full Text PDFPLoS One
February 2025
Université Clermont Auvergne, INRAE, UNH, UMR1019, Clermont-Ferrand, France.
Chimeric Antigen Receptor T (CAR-T) cells offer a promising strategy for cancer treatment. These CAR-T cells are either autologous or allogeneic T cells that are genetically modified to express a chimeric antigen receptor targeting a specific tumor antigen. Ongoing research aims to optimize the CAR-T cell efficacy, including strategies to modulate their metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!